CANopen Library Toolset Doc. CAN-N7S-CANDP-SUM

CANopen SW Library — Software User Manual Date: 2025-09-08
SFPRCE Issue: 2.3
N7 Space Sp. z 0.0. Page: 1 of54

CANopen Library Toolset

CANopen SW Library —
Software User Manual

CAN-N7S-CANDP-SUM rev. 2.3

N7 SPACE SP. Z O.0.

Prepared by Date and Signature
Konrad Grochowski Konrad Grochowski
ol (. 20250908

17:28:22 +02'00"

Verified by

Mateusz Dyrdot ~_— Mateusz Dyrdot

VA% 2025.09.09
14:45:51 +02'00'
Approved by
Seweryn Scibior Seweryn Sommso

I Date: 2025.09.09
Scibior 16:20:28 +02'00'

Copyright 2025 N7 Space Sp. z 0. o.
ESA Contract No. 4000143237/23/NL/AS

CANopen Library Toolset Doc. CAN-N7S-CANDP-SUM

CANopen SW Library — Software User Manual Date: 2025-09-08
SFPRCE Issue: 2.3
N7 Space Sp. z 0.0. Page: 2 of54

Table of Contents

O 6313 (014 10 (o1 5 T} 1 WO USROS 5
2 Applicable and reference dOCUMENLS...........c.veciieriierierie ettt see e sreereebe e reesseessaessnessseesseas 6
2.1 APPIICAbIE dOCUIMENTS......viiiiiiiciiiiiie ettt tee e e et e et e e e bee e taeessbeeeseseeensaeenenas 6
2.2 Reference dOCUMENLSco.iiiiiiiiieie ettt st 6

3 Terms, definitions and abbreVIated TEIIMNS.ovvvvureiiieeee ettt et e ee e e e e e eeereeeeeseeseaaaaeeeeas 7
4 COMVEINTIONS ¢ .teuttentietiestteeite et e bt e bt e e tteeateemteeabe e bt e bt e satesaeesateeate e bt eebeeeaeeemteembeembeenbeebeasbeesaeesneesnnean 8
5 Purpose Of the SOTIWATIEC.......ccooiiiiiiicie ettt e te e e s b e e e vee e sabeeenraeesaveeas 9
6 External view of the SOTEWATE.........ccuiiiiiiiiiiie e 10
7 OpErations ENVITOMIMEIEccvveruverrrerreareesseesseesseessressseaseeseessessssesssessseasseessesssessssessssasseessessssessns 12
7.1 (€151 1<) 1 O UPRPRRPPR 12
7.2 Hardware CONfIGUIATIONecvieiieiieiieiieree ettt te e e e e eteestaessbessbeesseesseesseessnenns 12
7.3 SOftWare CONTIGUIATION.ccveiiiriieiiciteeeee et ettt te e resre e b e esbeesseesseesseesssessseensens 13
7.4 Operational CONSLIAINEScceiriiriieeiiierteeetie ettt ettt te st e st eeteesteesbeesaeesneesaseeabeeseennes 14

I 0 o To3 21 5 (o) Rl o 1 1 OSSPSR 15
O OPErations MANUAL..........cccveeriiirierieiieereesteeseeseesetesreareesseesseesseesssessseasseesseesseesssessseessessseesseesns 16
10 Reference Manual............oooiiiiiiiiiie ettt ettt 17
|20 B 13 (0 1o 10 (o750 o FO OSSPSR 17
10.2 Help MEtROC.......iciiiiieiieiee ettt ettt e b e e b e esbe e taesasessseesbeesseenseesens 17
10.3 Screen definitions and OPEIAtIONScc.eevvierreirieiieriierieree e ereereesreesreeseresereesseesseesseesens 17
10.4 Commands and OPEIAtIONScoueeruerterterieriieterieete ettt ettt et st ete st sbe et sbeeeesbeeaees 17
10.5 Configuration OPIOMSc..eeeerierierieneeteieett ettt sttt ettt ettt et st sbt et sbeeeesbeeaees 17
10.5.1 SEIVICE tAIIOTING .vievieiieeiieciieriete et ste sttt e re e esteesteestbestbesebeesbeessaesseesssessseesseesses 17
10.5.2 Built-in DUTET SIZESeeeuiieeiieieeiieiee ettt et e 18

LO.6 EITOT INESSAZES ...veeeuvteeutieriteeriteeetteestteesiteeebeeesuteesbeeesbeeesabeeessbeesabeesnbteesabeesbaeesateesbeeesaseenn 19
10.6.1 EITOT COARS ...ttt ettt ettt et ettt e s ee et eeeene s 19
10.6.2 ADOTE COUCS ..ttt ettt ettt ettt et e et et e bt eseeeeeneentesseeneenseeneenes 19
10.6.3 ASSertions and LOZEINGcecuieiiiirieiiieie ettt ettt sttt et e e e eas 20

11 101703 - Y ORI 21
I O 0 15 (0 Ta L1 T) WSO 21

| O € 1< 5 14T) 1< U 21
11.2.1 ODbtaiNING the SOUICE.ccvieiieiieriiertiesie et et erieesteeseresteeaeesteesseessaesssesnsesnseenseenns 21
11.2.2 Building the LIDIArYc.cccvieeviiiieiiecie ettt see st eveeveesteesaesenesrvessveereessaeseneens 21
11.2.3 INSAILIALION ...ttt ettt ettt et e e e et et et e neeteeneenes 24
11.2.4 Include paths and library dependencies............ccocuerveriieeciiesiienienienie e 24

Copyright 2025 N7 Space Sp. z 0. o.
ESA Contract No. 4000143237/23/NL/AS

CANopen Library Toolset Doc. CAN-N7S-CANDP-SUM

CANopen SW Library — Software User Manual Date: 2025-09-08
SFPRCE Issue: 2.3
N7 Space Sp. z 0.0. Page: 3 of54

11.2.5 Endianness ConSiderations.ceouereeieriieienienieie ettt 25
11.2.6 Using CANSW with Microchip MPLAB X IDEccccoiiiiiiiiiiiiiieeeeeeeeeee 25

11.3 Using the software on a typical taskcoeoiiiiiiiiiiiiiieee e 27
11.3.1 MEMOTY AllOCALIONveeevieeiieiieiieiee ettt et e te et be et estaessaessseessaessaesseessneans 27
11.3.2 Receiving and sending CAN framescccvevierierieniiiniieieeseesee e sveereeiee e sene e 28
11.33 SocketCAN frame translationcooceevieiiiiieeiieee e 30
11.3.4 Setting the time / external Clockocoiiiiiiiiiiiii e 31
11.3.5 Device and Object DICONATIYccceeviiriireieeriiesieeienieeteesieesseeseeseessreeseesseesseessneans 32
11.3.6 ACE2AEV ..ttt ettt seeneennas 33
11.3.7 NMT Master and SIAVEc.coouieiieiieieie ettt st 37
11.3.8 PO ettt ettt et et e et n e teeaeenes 45
11.3.9 CLHENE SDIO ...ttt ettt ettt e s et beente s eneesesneenean 50

12 ANALYLICAL INACX ...ttt ettt ettt ettt sbt e saeeeateete e teesaeesnneens 52
13 55] USRS 53
13,1 LSt OF TADIES c.ueeeeeiiiiieiee ettt ettt et sttt et e beeaeeeesneeneas 53

L 0 B o il 2 Ve 1 (< OO UPRUURR 53
13.3 LSt OF LASTIES uveeuveeuiietietiestie ettt et ettt et e sttt et et e bt e s et e s st e enteeateesbeesaeesaneeabeeaseeseenes 53

Copyright 2025 N7 Space Sp. z 0. o.
ESA Contract No. 4000143237/23/NL/AS

CANopen Library Toolset Doc. CAN-N7S-CANDP-SUM
CANopen SW Library — Software User Manual Date: 2025-09-08
SFPRCE Issue: 2.3
N7 Space Sp. z 0.0. Page: 4 of54
Change Record
Issue Date Change
1.0 2021-06-28 | Initial release
1.1 2021-10-15 | Fixes for CDR RIDs:
e 7.2 —reworded sentences for better readability,
e 11.3.6 — extended venv usage instruction
e (Captions added to all code listings
e Removed outdated reference to librt
e Explicit mention the Ubuntu 20.04 as the reference system
e Added chapter 11.2.1 — Obtaining the source
e Added 11.2.2.1 chapter about SCET and SUTC types
e Added 11.2.2.2 chapter about cross-compilation
1.2 2021-11-18 | Updated referenced documents’ versions (for v3.1.3)
1.3 2021-11-26 | Updated referenced documents’ versions (for v3.2.0)
2.0 2024-10-03 | CANopen Library Toolset project PDR:
e Document identifier changed from CAN-N7S-UM-21001 to
CAN-N7S-CANDP-SUM
e New ESA contract identifier added to footer
e Introduction updated
e Reference documents updated
e 10.6.3 Assertions and logging chapter added
2.1 2024-11-27 | Release for MTR:
e Reference documents updated
2.2 2025-05-29 | Release for TRR:
e Reference documents updated
e Chapter 11.2.5 (endianness) added
e Chapter 11.2.6 (MPLAB) added
e Added compilation options for GR712RC
2.3 2025-09-08 | Release for CDR/QR:
e Reference documents updated
e Examples updated to reference v3.5.0

Copyright 2025 N7 Space Sp. z 0. o.
ESA Contract No. 4000143237/23/NL/AS

CANopen Library Toolset Doc. CAN-N7S-CANDP-SUM

CANopen SW Library — Software User Manual Date: 2025-09-08
SFPRCE Issue: 2.3
N7 Space Sp. z 0.0. Page: 5 of54

1 Introduction

This document provides Software User Manual for the CANopen SW Library deliverable of the
CANopen Library Toolset project.

CANopen SW Library (CANSW) is an adaptation to space industry requirements of an existing and
field-tested open-source CANopen library (lely-core). CANSW is compliant with space-specific
CANopen extensions defined in ECSS-E-ST-50-15C and ECSS Ceriticality Category B software
requirements. It was developed in the scope of previous ESA activity and validated on representative
hardware platform (SAMV71). In the scope of this project its validation will be extended to include
other ARM (SAMRH71 and SAMRH707) and LEON3 (GR712RC) platforms.

Additionally in the scope of the activity CANopen Library Test Environment, Test Suite and
Development Support Software will be developed.

CANopen Library Test Environment (CTESW) defines the environment required to execute CANopen
Library Test Suite (CTSSW) which is used to validate CANSW. CTSSW was developed in the scope
of previous ESA activity and is available as open-source software. In the scope of this project CTESW
will be extended to support new platforms and CTSSW will be executed on those.

CANopen Library Development Support Software (CDSSW) is a set of new tools developed in the
scope of this project and aiming at supporting design of CANopen networks using CANSW. It will
provide user with capabilities to verify semantic correctness of the multiple nodes building the CANopen
network and offer support with editing, monitoring and instrumenting of the network.

The Software User Manual is produced as a standalone document and structured according to the SUM
Document Requirements Definition (DRD) given in Annex H of ECSS-E-ST-40C [ADI1].

Copyright 2025 N7 Space Sp. z 0. o.
ESA Contract No. 4000143237/23/NL/AS

CANopen Library Toolset

Doc. CAN-N7S-CANDP-SUM

CANopen SW Library — Software User Manual Date: 2025-09-08
SFPRCE Issue: 2.3
N7 Space Sp. z 0.0. Page: 6 of 54
2 Applicable and reference documents
2.1 Applicable documents
ID Title Reference Rev.
ADI1 ECSS — Space engineering ECSS-E-ST-40C 6 March 2009
Software
AD2 ECSS — CANbus extension protocol ECSS-E-ST-50-15C 1 May 2015
2.2 Reference documents
ID Title Reference Rev.
RD1 CAN in Automation — CiA 301 Version 4.2.0
CANopen application layer and
communication profile
RD2 CAN in Automation — CiA 306 Version 1.3.0
Electronic data sheet specification
for CANopen
RD3 CANopen Library Toolset CAN-N7S-CANDP-ICD 2.4
CANopen SW Library —
Interface Control Document
RD4 CANopen Library Toolset CAN-N7S-CANDP-SCF 2.4
CANopen SW Library —
Software Configuration File
RD5 CANopen Library Toolset CAN-N7S-CANDP-SDD 24
CANopen SW Library —
Software Design Document
RD6 CANopen Library Toolset CAN-N7S-CANDP-SRS 2.3
CANopen SW Library —
Software Requirements Specification
RD7 CANopen Library Toolset CAN-N7S-CANDP-FMEA 2.3
CANopen SW Library —
Failure Modes and Effects Analysis
RD8 CANopen Library Toolset CAN-N7S-CTSDP-SUM 2.2

Test Suite —
Software User Manual

Copyright 2025 N7 Space Sp. z 0. o.

ESA Contract No. 4000143237/23/NL/AS

CANopen Library Toolset Doc. CAN-N7S-CANDP-SUM

CANopen SW Library — Software User Manual Date: 2025-09-08
SFPRCE Issue: 2.3
N7 Space Sp. z 0.0. Page: 7 of54

3 Terms, definitions and abbreviated terms

This document acronyms and abbreviations are listed here under.

CAN Controller Area Network

CANDP CANopen SW Library Data Package

CANSW CANopen SW Library

CDSDP CANopen Development Support Data Package
CDSSwW CANopen Development Support Software
CTESW CANopen Test Environment Software

CTSDP CANopen Test Suite Data Package

CTSSW CANopen Test Suite Software

HWTB Hardware Test Bench

N7S N7 Space

Copyright 2025 N7 Space Sp. z 0. o.
ESA Contract No. 4000143237/23/NL/AS

CANopen Library Toolset Doc. CAN-N7S-CANDP-SUM

CANopen SW Library — Software User Manual Date: 2025-09-08
SFPRCE Issue: 2.3
N7 Space Sp. z 0.0. Page: 8 of54

4 Conventions

This Software User Manual describes a software project, therefore it refers to various commands that
can be executed in the terminal and it presents various source code fragments. In order to make those
special blocks more readable, numerous style conventions are used. This chapter quickly summarizes
said conventions.

Short commands and code fragments that are embedded inside normal text paragraphs use this
style with a monospace font.

Commands that are a bit longer or span multiple lines follow the following style:

$ command
Output (optional)

All commands listed in this manual were prepared and validated on Ubuntu 20.04 system. Any similar
Linux system should support all of the commands, it is recommended to use Ubuntu/Debian family.

Directory contents listings follow the same convention:

include/
L— subfolder/
L— file
lib/
L— g generic comment about contents of Lib/
share/

Source code blocks use the below style:

co_nmt_t* nmt_service = co_nmt_create(network, device);
assert(nmt_service != NULL); // must be non-null

The syntax highlighting colours used in the above block are defined as follows:

C Preprocessor include path
Type (built-in and user-created)

Keywords

Variable definition

Struct member variable definition
NULL

String literal

Comments

Other

Blocks with DCF contents use the following scheme:

[]

Key=Value # comment

Copyright 2025 N7 Space Sp. z 0. o.
ESA Contract No. 4000143237/23/NL/AS

CANopen Library Toolset Doc. CAN-N7S-CANDP-SUM

CANopen SW Library — Software User Manual Date: 2025-09-08
SFPRCE Issue: 2.3
N7 Space Sp. z 0.0. Page: 9 of54

5 Purpose of the Software

The main purpose of the Software is to provide a software stack supporting a subset of the CANopen
protocol as defined in ECSS-E-ST-50-15C [AD2]. It provides an implementation of the Object
Dictionary and the Network Management (NMT), Service Data Object (SDO), Process Data Object
(PDO), Synchronization Object (SYNC) and Emergency Object (EMCY) protocols. It allows users to
create programs that need to use the CANopen protocol to communicate with software on other devices,
which are not necessarily using the same software stack. CANSW is a highly portable software library
that can be used also on resource constrained bare-metal microcontrollers. The Software and its public
Application Programming Interface are written in the C Programming Language (C99), which means it
can also be used directly by software written in C++ and when using any other programming language
that can interface with C, which is a very large set of languages. Even the C Standard Library is not
required to be available for users of the software. The implementation is passive, it relies on the user to
provide integration with the underlying CAN bus to send and receive CAN frames and to update the
clock used by CANSW. That means that the implementation is independent from any specific CAN
networking driver and system clocks.

CANSW includes also a Python tool — dcf2dev, that can optionally be used by the user to transform
device configuration files (DCF - [RD2]) into C data structures.

Detailed software overview can be found is SRS [RD6] and SDD [RD5].

Copyright 2025 N7 Space Sp. z 0. o.
ESA Contract No. 4000143237/23/NL/AS

CANopen Library Toolset Doc. CAN-N7S-CANDP-SUM

CANopen SW Library — Software User Manual Date: 2025-09-08
SFPRCE Issue: 2.3
N7 Space Sp. z 0.0. Page: 10 of 54

6 External view of the software

CANSW is delivered as an archive consisting of source files and autotools-based build system. The
software itself consists of 4 libraries:

e liblely-compat — provides implementation of necessary parts of the C Standard Library

e liblely-util — provides implementation of data structures and various utilities

e liblely-can — provides implementation of base CAN network interfaces

e liblely-co — provides implementation of the CANopen protocol on top of the other libraries

The directory structure can be described as follows (for clarity reduced to most important items):

lely-core/
— doc/
— Doxyfile.in - Doxygen configuration file
L— Makefile.am
— docker/ - reference container configuration for developers (used by CI)
— include/
— lely/
— can/
L— cContains header files of Liblely-can
— co/
L— contains header files of Lliblely-co
— compat/
L— contains header files of Lliblely-compat
— util/
L— Contains header files of Liblely-util
— Makefile.am
— lib/
— can/
L— contains Makefile.am and source code of Lliblely-can
— co/
L— Contains Makefile.am and source code of Liblely-co
— compat/
L— contains Makefile.am and source code of Liblely-compat
— util/
L— contains Makefile.am and source code of Liblely-utils
— Makefile.am

— m4/
L— .m4 files used by the autotools build system
— pkgconfig/

|— .pc.in files with pkg-config metadata file templates
L— Makefile.am
— python/

L— dcf-tools/
F— dcf/
| L— DCF file manipulation utility Library for Python
— dcf2dev/
| L dcf2dev Python program sources
— Makefile.am
L— setup.py

Copyright 2025 N7 Space Sp. z 0. o.
ESA Contract No. 4000143237/23/NL/AS

SPRCE

CANopen Library Toolset Doc. CAN-N7S-CANDP-SUM

— unit-tests/

CANopen SW Library — Software User Manual Date: 2025-09-08
Issue: 2.3

N7 Space Sp. z 0.0. Page: 11 of54

can/

L— contains Makefile.am and .cpp files with unit tests for Liblely-can

co/

L— contains Makefile.am and .cpp files with unit tests for Liblely-co

compat/

L— contains Makefile.am and .cpp files with unit tests for Lliblely-compat

cpputest/

L— contains Makefile.am and a .cpp file with sanity unit tests

libtest/

L— contains Makefiles and utility source code used by other unit tests

util/

L— contains
Makefile.am

— Makefile.am
— configure.ac

Makefile.am and .cpp files with unit tests for Lliblely-util

The Software Configuration File [RD4] contains a detailed list of files in the library package along with
their SHA-256 checksums.

Copyright 2025 N7 Space Sp. z 0. o.
ESA Contract No. 4000143237/23/NL/AS

CANopen Library Toolset Doc. CAN-N7S-CANDP-SUM

CANopen SW Library — Software User Manual Date: 2025-09-08
SFPRCE Issue: 2.3
N7 Space Sp. z 0.0. Page: 12 of 54

7 Operations environment

7.1 General

The software in this project is designed to be included and used by other software. Only a C compiler is
required to build the library, and a C++ compiler to build its unit tests. Apart from the library itself, there
are no other software component requirements imposed on the final user software. The hardware parts
used by the software are the Central Processing Unit (CPU), the Floating-Point Unit (FPU) and Random
Access Memory (RAM). No other hardware, especially CAN specific, is required.

For reference, the software has been built in a continuous manner using the following environment.

Table 1 — CANSW build environment.

Tool Version ‘ Purpose
Container environment
Docker 19.03.12 Container manager. Image containing all necessary build

environment is one of the deliverables of the CANSW (build
environment includes all other tools from this table).

Compilation environment

gcc x86/x64 4.9.0 Supported GNU C Compiler versions for x86 compilation.
5.5.0
6.5.0 Newest (10.x) version was used in the validation activities and
7.5.0 is included in distributed Docker image.
8.4.0
9.3.0 Other versions were verified by CANSW Continuous
10.3.0 Integration system and unit-tested, but not validated.
13.2.0

gcc ARM arm-gnu- GNU C Compiler for target ARM platforms
toolchain-13.3-
rel1-x86_64-

arm-none-cabi
XC32 ARM | XC32v4.458.3.1 | Microchip XC32 compiler for SAM* microcontrollers.
compiler
bcec LEON3 sparc-gaisler-elf- | BCC C Compiler (GCC compatible) for LEON3 platforms
gcee (bee-v2.3.1)
13.2.1 20240119

Autotools autoreconf 2.69 | Build system
Unit-testing environment
CppUTest | 4.0 ‘ Unit test library

7.2 Hardware configuration

The software has been tested on both x86 and ARM hardware architectures. The CANopen protocol
supports floating-point values, the FPU has to be enabled before using them. The software is designed
to be incorporated into other user-specified software. Therefore the detailed hardware configuration is
project dependent, while library itself is designed for portability. Because of that only a generic hardware
and component deployment diagram can be provided.

Copyright 2025 N7 Space Sp. z 0. o.
ESA Contract No. 4000143237/23/NL/AS

CANopen Library Toolset Doc. CAN-N7S-CANDP-SUM

CANopen SW Library — Software User Manual Date: 2025-09-08
SFPRCE Issue: 2.3
N7 Space Sp. z 0.0. Page: 13 of 54
<<device>>
User's HW

<<executable>>

User’s SW
LT
<<component>> <<compeonent>> <<component>>
Component 1 Component 2 Component N

I—CANopen Object Dict\'onarv——li

<<component>>
CANSW

N

HAL

<<component>>
HW Drivers

<<hardware>>
CAN HW

CAN bus

<<device>> <<device>>
CAN Node 1 CAN Node 2

<<device>>

L
‘ CAN Node N

Figure 1 — CANSW generic deployment diagram.

7.3 Software configuration

The user should provide a Hardware Abstraction Layer (HAL) that will interface with the liblely-can
library to provide clock and base CAN networking capabilities to the Software. Depending on the project
this might involve integration with an underlying Operating System. The application code should
interface with the liblely-co library for project-specific CANopen-based application logic. The
CANopen device description also needs to be provided to the liblely-co library, either by compiling and
linking manually written code with said description, or by using code generated by the dcf2dev tool
from a Device Configuration File (DCF).

Copyright 2025 N7 Space Sp. z 0. o.
ESA Contract No. 4000143237/23/NL/AS

CANopen Library Toolset Doc. CAN-N7S-CANDP-SUM
CANopen SW Library — Software User Manual Date: 2025-09-08
SFPHACE Issue: 2.3
N7 Space Sp. z 0.0. Page: 14 of 54
CANSW
HAL C library
— 1 B
N L
CANopen library [
interface
C p 3
Device Description liblely-co \@; liblely-can
o)
N I
| e (e i
§ liblely-util
Initial version of Device i
Description (with Object
Dictionary) can be
generated by user from DCF
file using dcf2dev tool.
liblely-compat
| Python tools

Device’s C code
generation

O—L

HC

dcf2dev

Figure 2 — CANSW components diagram.

7.4 Operational constraints

CANSW methods were not designed to be called directly from interrupt handlers and no special
precautions were implemented in them. It is assumed in the analysis that events like “message received”
are passed from interrupt handlers to HAL by the user and the Library code is executed in non-interrupt
context. Note: methods might be safe to be used from interrupt handlers, but it is up the user to perform

proper analysis.

CANSW is separated from HW and Operating System concerns and does not perform any internal
synchronization to avoid data races. User should ensure that no CANSW methods are called from
multiple threads/tasks on the same shared data or user should provide adequate synchronization

techniques.

Copyright 2025 N7 Space Sp. z 0. o.
ESA Contract No. 4000143237/23/NL/AS

CANopen Library Toolset Doc. CAN-N7S-CANDP-SUM

CANopen SW Library — Software User Manual Date: 2025-09-08
SFPRCE Issue: 2.3
N7 Space Sp. z 0.0. Page: 15 o0f54

8 Operations basics

N/A - The software in this project is designed to be included and used by other software. Therefore there
are no predefined operational tasks. Staffing concerns, standard daily operations and contingency
operations are all dependent on the final software based on CANSW.

Copyright 2025 N7 Space Sp. z 0. o.
ESA Contract No. 4000143237/23/NL/AS

CANopen Library Toolset Doc. CAN-N7S-CANDP-SUM

CANopen SW Library — Software User Manual Date: 2025-09-08
SFPRCE Issue: 2.3
N7 Space Sp. z 0.0. Page: 16 of 54

9 Operations manual

Operations manual is not provided for CANDP. Details related to operations of CTSSW (validation test
suite) are provided in separate manual [RD&].

Copyright 2025 N7 Space Sp. z 0. o.
ESA Contract No. 4000143237/23/NL/AS

CANopen Library Toolset Doc. CAN-N7S-CANDP-SUM

CANopen SW Library — Software User Manual Date: 2025-09-08
SFPRCE Issue: 2.3
N7 Space Sp. z 0.0. Page: 17 of 54

10 Reference manual

10.1 Introduction

A complete reference manual of the programming interfaces of each of the modules of CANSW is
available as the Doxygen-generated documentation supplied with the [RD3] Annex A. It is generated
from source code of the Library and inline comments written for every public API function. Doxygen-
style comments in all public header files used for generation of the reference manual can also be
inspected directly.

Commands listed in the following chapters assume Linux host — preferable Ubuntu 20.04 or similar. If
user follows the environment setup from CTSDP SUM [RD&], all commands should be executed inside
the Docker container (for example by preceding them with docker-here alias from [RDS]).

10.2 Help method

Each CANSW public function is documented with a basic description, the meaning of each input
parameter and return value and a reminder on how to access error information in case of failure. This
information is available in the Doxygen-generated documentation.

While building the Library, both the configure script and the generated make build system have
built-in help describing available options:

$./configure --help
$ make --help

The dcf2dev tool also has a built-in help command.

| $ dcf2dev --help

10.3 Screen definitions and operations

N/A

10.4 Commands and operations

N/A
10.5 Configuration options

10.5.1 Service tailoring

CANSW supports conditional compilation of CANopen service/protocol. This allows the user to control
the object size by choosing to compile only the services that will be in fact used by the user code. This
has to be specified at configuration time just before building the Library. All configuration options can
be listed as already mentioned in [10.2] but the most important ones used in ECSS compliance mode
and related to service tailoring are:

e CSDO, to disable pass —-disable-csdo
o EMCY, to disable pass —-disable-emcy

Copyright 2025 N7 Space Sp. z 0. o.
ESA Contract No. 4000143237/23/NL/AS

CANopen Library Toolset Doc. CAN-N7S-CANDP-SUM

CANopen SW Library — Software User Manual Date: 2025-09-08
SFPRCE Issue: 2.3
N7 Space Sp. z 0.0. Page: 18 of 54

e SYNC, to disable pass ——disable-sync
e RPDO, to disable pass —-disable-rpdo
e TPDO, to disable pass ——disable-tpdo
e NMT Master, to disable pass ——disable-master

For example $./configure --enable-ecss-compliance --disable-emcy --disable-
csdo --disable-master for a small build focused on PDO support.

The disabled services are reflected in the generated config.h configuration header that is used by the
Library during build and can be then used by the user application. It contains C Preprocessor definitions
for disabled services e.g.

#define LELY_NO_CO_CSDO=1
#define LELY_NO_EMCY=1
#define LELY_NO_CO MASTER=1
for the example configuration above.

10.5.2 Built-in buffer sizes

CANSW, when configured in ECSS compliance mode, has disabled dynamic memory allocation
support. In order for certain CANopen services to function, the implementation uses memory buffers
with static predefined sizes. The user can overwrite the default sizes if the need arises. Below is the table
of C Preprocessor definitions that control various buffers and their default values. To make sure that the
Library and user code have consistent data structure definitions, overwritten values should be set when
building both CANSW and user code.

Table 2 — C Preprocessor configuration variables.

C Preprocessor definition name | Default value | Description

CO_EMCY_CAN_ BUF_SIZE 16 The maximum number of EMCY messages to
send pending on inhibit timer

CO_EMCY MAX NMSG 8 The maximum number of EMCY errors in the
error stack

CO_ARRAY CAPACITY 256 The maximum size (in bytes) of a CANopen
array value

CO_SDO_REQ MEMBUF_SIZE |8 The size in bytes of an SDO upload/download

request memory buffer, default large enough
to accommodate basic data types
CO_SSDO_MEMBUF SIZE 127 *7 The maximum size (in bytes) of Server SDO
memory buffer for incoming data, default
large enough to accommodate maximum
block size used by SDO block transfer
CO_CSDO MEMBUF SIZE 8 The maximum size (in bytes) of Client SDO
memory buffer for incoming data, default
large enough to accommodate basic data types
CO_NMT CAN_BUF_ SIZE 16 The maximum number of CAN frames used
by NMT Master for buffered requests to NMT
slaves

CO_NMT MAX NHB 127 The maximum number of NMT Heartbeat
consumers, default equal to maximum number
of CANopen nodes

Copyright 2025 N7 Space Sp. z 0. o.
ESA Contract No. 4000143237/23/NL/AS

CANopen Library Toolset Doc. CAN-N7S-CANDP-SUM

CANopen SW Library — Software User Manual Date: 2025-09-08
SFPRCE Issue: 2.3
N7 Space Sp. z 0.0. Page: 19 of 54

10.6 Error messages

Please refer to FMEA [RD7] Table 4 for details about error messages and failure modes that can occur
while accomplishing any of the user's functions, including the meaning of each message and
recommended action to be taken after.

10.6.1 Error codes

In case of calling a function documented as setting an error code or number, the currently set error code
can be obtained using the get errnum () function available in <lely/util/error.h> header
file. The Library itself uses a handful of error codes described below. More error codes are available for
use in the user software, all of them are listed and documented in the Doxygen documentation for
<lely/util/error.h>.

Table 3 — Error codes used internally by CANSW

Error code constant | Description

ERRNUM INVAL Invalid argument provided
ERRNUM_NOMEM Not enough memory available
ERRNUM_PERM Operation not permitted
ERRNUM NOSYS Function not supported
ERRNUM AGAIN Try again

In order to reset the currently set error number, after fixing the issue, one should execute
set errnum (ERRNUM SUCCESS) ;.

A custom error code storing and reading functionality can be implemented by the user by calling
set errc set handlerandget errc set handler.One use case for changing the default
behaviour is to use a custom storage or synchronization mechanism of the possibly shared error state.
Please refer to the Doxygen documentation for more details.

10.6.2 Abort codes

In CANopen SDO transfers, abort codes are used to communicate an error between Client SDO and
Server SDO services. CANSW provides C Preprocessor constant definitions of SDO abort codes as
defined in [RD1] Table 22 in the <lely/co/sdo.h> header file. All abort code definitions follow
the same naming scheme e.g. CO_SDO_AC_PARAM RANGE. Please refer to [RD1] and the Doxygen
documentation of the mentioned header file.

Client SDO service API provides indication and confirmation callback functions that can be set to
monitor request progress and receive abort codes from Server SDO. For details refer to the Doxygen
documentationof co_csdo_set dn ind, co csdo _set up ind,co csdo dn con tand
co_csdo_up con_t.

Applications based on the Server SDO service can provide specific abort code handling logic by setting
user-provided upload and download indication functions using co obj set dn ind,
co _sub set dn ind, co obj set up indand co sub set up ind CANSW function.
Refer to Doxygen documentation for details.

Copyright 2025 N7 Space Sp. z 0. o.
ESA Contract No. 4000143237/23/NL/AS

CANopen Library Toolset Doc. CAN-N7S-CANDP-SUM

CANopen SW Library — Software User Manual Date: 2025-09-08
SFPRCE Issue: 2.3
N7 Space Sp. z 0.0. Page: 20 of 54

10.6.3 Assertions and logging

By default the library is built with support for assertions in the code. This is a recommended option with
initial deployment of the library — assertions help to detect misuse of the C API. When necessary for
performance / code size, they can be disable using standard C compilation define NDEBUG.

On embedded environments (especially bare-metal) to access the information provided by the assertion
user will need to implement compiler specific assertion handling procedure. For GCC compiler it is
usually called assert func and receives all assertion data as arguments. Those can be logged or
discarded — it is up for the user to decide. Minimal approach would be to provide empty method as a
location for inserting break point for debugging.

Additionally CANSW supports human-readable logging. This requires support for dynamic allocation
and hence cannot be used in the “ECSS compliant” version. But if such needs arise, for debugging
purposes, the library can be built without ~enable-ecss-compliance and with --enable-
diag option. Messages will be provided to standard output and it is up to the user to configure the
system in such way, that the output will be visible.

Copyright 2025 N7 Space Sp. z 0. o.
ESA Contract No. 4000143237/23/NL/AS

CANopen Library Toolset Doc. CAN-N7S-CANDP-SUM

CANopen SW Library — Software User Manual Date: 2025-09-08
SFPRCE Issue: 2.3
N7 Space Sp. z 0.0. Page: 21 of54

11 Tutorial

11.1 Introduction

This tutorial serves as an introduction to the CANopen SW Library. Its goal is to demonstrate how to
use the provided API to perform basic tasks related to the CANopen protocol. It covers building the
Library in the ECSS compliance mode, assuming a Linux-based environment with embedded system
characteristics i.e. with no dynamic memory allocation. For simplicity and readability, code fragments
in this tutorial make use of the C Standard Library, but the built and the Library do not, due to the ECSS
compliance mode. It also covers providing and using a custom memory allocator, example integration
with a base CAN networking stack and an external clock. It covers CANopen specific topics like the
Object Dictionary, NMT Master and Slave nodes, basic PDO and SDO transfer services.

This tutorial assumes a basic level of knowledge of the CANopen protocol and only provides an
introduction to the Library, written specifically for software engineers — potential users of the Library.

11.2 Getting started

11.2.1 Obtaining the source

CANSW source can be obtained by extracting delivered ZIP archive as in Listing 1.

Listing 1 — Unpacking CANSW source from ZIP file.

| $ unzip CAN-CANDP-library-src-v3_5_0.zip # assuming version 3.5.0

Or (recommended option on Linux as CANSW uses symbolic-links) from TAR BZIP2 - Listing 2.

Listing 2 — Unpacking CANSW source from TAR BZIP2 file (recommended for Linux).

‘ $ tar -xvf CAN-CANDP-library-v3_ 5 ©.tar.bz2 # assuming version 3.5.0 ‘

Alternatively CANSW source can be accessed using publicly available code repository by executing the
commands from Listing 3 (assuming version 3.5.0 of the CTSSW).

Listing 3 — Retrieving CANSW source from GitLab.com repository.

‘ $ git clone https://gitlab.com/n7space/canopen/lely-core.git --depth=1 --branch=v3.5.0

11.2.2 Building the Library

This section assumes that the Library's main directory is the current working directory. In order to build
a static version of the library in “debug” configuration, commands from Listing 4 should be executed.

Listing 4 — Build tool configuration for building library in debug mode (without optimalization).

$ autoreconf -i
$ CFLAGS="-00 -g" CXXFLAGS="-00 -g" ./configure --disable-shared --enable-ecss-compliance
$ make

To build an optimized "release" variant of the library the CFLAGS and CXXFLAGS environment
variables should not exist or should be setto —~02 -g, which will be assumed as a default in the former
case (see Listing 5).

Copyright 2025 N7 Space Sp. z 0. o.
ESA Contract No. 4000143237/23/NL/AS

CANopen Library Toolset Doc. CAN-N7S-CANDP-SUM

CANopen SW Library — Software User Manual Date: 2025-09-08
SFPRCE Issue: 2.3
N7 Space Sp. z 0.0. Page: 22 of 54

Listing 5 — Build tool configuration for building library in release mode (with optimization).

$ unset CFLAGS

$ unset CXXFLAGS

$./configure --disable-shared --enable-ecss-compliance
$ make

In order to see more configuration options, execute the command from Listing 6.

Listing 6 — Build configuration help command.

| $./configure --help ‘

Unit tests require the CopUTest library. The configure script uses pkg-config to find it. In case
of a custom manual build of the dependency, user might need adjusting the PKG_CONFIG PATH
environment variable. Both unit tests and the CpopUTest library require a C++ compiler. The library
itself requires only a C compiler.

To build the library and execute the unit tests, use command from Listing 7.

Listing 7 — Command for building the library and executing unit-tests.

| $ make check |

Note: unit tests require a full ECSS-compliant build of the Library, service tailoring is not supported by
them. See [10.5.1].

To build the Doxygen documentation one has to have Doxygen and Graphviz installed on the
development system at configure time (during execution of . /configure command, like in Listing
4 or Listing 5). Then the command from Listing 8 will build the documentation in HTML format and
make it available at doc/html/index.html.

Listing 8 — Command for generating documentation from the code.

‘ $ make html

The documentation should be built and available at doc/html/index.html.
11.2.2.1 SCET and SUTC time types support

The Library offers optional support for SCET and SUTC time types. To enable those non-standard
CANopen types, user needs to provide data type to be used to identify those values in the protocol. This
has to be done using C language defines passed via CPPFLAGS:

e CO DEFTYPE TIME SCET
e CO _DEFTYPE TIME SUTC

Listing 9 presents an example which enables SUTC type and assigns 0x0061 type identifier to it during
Library build configuration. User has to be aware, that such setting of CPPFLAGS overwrites the default
one, so special care might be required to ensure proper set of all required flags.

Listing 9 — Build tool configuration for building library with SUTC type support enabled.

| $ CPPFLAGS="-DCO_DEFTYPE_TIME_SUTC=0x0061" ./configure --enable-ecss-compliance

Copyright 2025 N7 Space Sp. z 0. o.
ESA Contract No. 4000143237/23/NL/AS

CANopen Library Toolset Doc. CAN-N7S-CANDP-SUM

CANopen SW Library — Software User Manual Date: 2025-09-08
SFPRCE Issue: 2.3
N7 Space Sp. z 0.0. Page: 23 of 54

11.2.2.2 Cross-compilation configuration

Build tool support cross-compilation — building the Library for platform other than the host one.
Assuming GNU compatible build toolchain is available in the system (gcc, ar, libtool etc.) and is
prefixed with platform-name (e.g. platform-name-gcc), configuring build of the Library to use that tool
can be done by passing —-host=platform-name parameter to configure script.

User should be aware, that choosing the tool might not be enough for properly configuring build for
selected platform. Subset of compilation and linking flags might require to be set up according to given
platform requirements. Those flags include:

e CFLAGS
e CPPFLAGS
e LDFLAGS

It is recommended for embedded platforms to disable building of executables (especially for bare metal
platforms), by passing ——disable-tests --disable-unit-tests to the configuration.

User must take special care for merging various flags (compilation mode, cross-compilation specific
options, etc.) and other customization options (tailored services etc.) in the configure script call —all
options must be passed at once.

Listing 10 presents complete configuration of cross-build compilation for SAMV71, SAMRH71 and
SAMRH707 ARM platforms. Listing 11 presents the configuration for GR712RC LEON3 platform.
Those configurations were used during Library validation activities.

Listing 10 — Cross-compilation build configuration example (ARM platforms).

$./configure --host=arm-none-eabi \

"LDFLAGS= -mcpu=cortex-m7 \
-mfloat-abi=hard \
-mfpu=fpv5-di6 \
-mlittle-endian \

-mthumb -ffunction-sections \
-Wl,--gc-sections \
--specs=nosys.specs” \

"CFLAGS= -02 \

-ggdb3 \
-DCO_DEFTYPE_TIME_SCET=0x0060 \
-DCO_DEFTYPE_TIME_SUTC=0x0061 \
-DLELY_HAVE_ITIMERSPEC=1 \
-mcpu=cortex-m7 \
-mfloat-abi=hard \
-mfpu=fpv5-di6 \
-mlittle-endian \

-mthumb \

-ffunction-sections” \

--enable-ecss-compliance \

--disable-shared \

--disable-python \

--disable-tests \

--disable-unit-tests \

--disable-threads

Copyright 2025 N7 Space Sp. z 0. o.
ESA Contract No. 4000143237/23/NL/AS

CANopen Library Toolset Doc. CAN-N7S-CANDP-SUM

CANopen SW Library — Software User Manual Date: 2025-09-08
SFPRCE Issue: 2.3
N7 Space Sp. z 0.0. Page: 24 of 54

Listing 11 — Cross-compilation build configuration example (GR712RC platform).

$./configure --host=sparc-gaisler-elf \
"LDFLAGS= -gbsp=gr712rc \
-mcpu=leon3 \
-mfix-gr712rc \
-Wl,--gc-sections™ \
"CFLAGS= -02 \
-ggdb3 \
-DCO_DEFTYPE_TIME_SCET=0x0060 \
-DCO_DEFTYPE_TIME_SUTC=0x0061 \
-DLELY_HAVE_ITIMERSPEC=1 \
-DLELY_HAVE_TIMESPEC=1 \
-DLELY_HAVE_SYS_TYPES_H=1 \
-mcpu=leon3 \
-gbsp=gr712rc \
-mfix-gr712rc” \
--enable-ecss-compliance \
--disable-shared \
--disable-python \
--disable-tests \
--disable-unit-tests \
--disable-threads

11.2.3 Installation

Assuming that the Library is already built, it is enough to execute make install to install the library
at default system’s location. In order to control the target installation directory, one can set it up at the
configure level (Listing 12).

Listing 12 — Custom installation directory configuration.

$./configure --disable-shared --enable-ecss-compliance --prefix /custom/canopen/directory

11.2.4 Include paths and library dependencies

The installed Library has a very simple structure:

include/
1lib/
share/

The 1ib/pkgconfig/ subdirectory contains pkg-config metadata files and in order to use
Library, the user application should use the 1iblely-co.pc file for configuration.

In case pkg-config is not used by the user and the library is not installed in the system’s default
location, include/ directory should be added to include paths e.g.

|$ gcc <other options> -isystem /path/to/library/include |

and 1ib/ directory added to lib path with -11ely-compat, -1lely-util, -1lely-can and -
llely-co libraries (in that order) linked into the user application executable file.

Copyright 2025 N7 Space Sp. z 0. o.
ESA Contract No. 4000143237/23/NL/AS

CANopen Library Toolset Doc. CAN-N7S-CANDP-SUM

CANopen SW Library — Software User Manual Date: 2025-09-08
SFPRCE Issue: 2.3
N7 Space Sp. z 0.0. Page: 25 of54

11.2.5 Endianness considerations

CANopen library stores its Object Dictionary always as Little Endian, disregarding platform memory
layout. This makes the Object Dictionary contents consistent with CANopen messages endianness,
which is useful with services like PDO and SDO. This puts additional responsibilities on the user when
writing portable code: user should never modify Object Dictionary contents directly (via pointer etc.).
While accessing Object Dictionary user should always rely on library access functions (from
co_dev_get _val X_and co_dev_set_val_ X _ families — for example co_dev_get_val u32).
Do not use “typeless” co_dev_get_val or co_dev_set_val for value types other than DOMAIN.

11.2.6 Using CANSW with Microchip MPLAB X IDE

CANopen library can be integrated with Microchip’s MPLAB IDE using Python script provided as a
part of CTESW.

The script generates a library project containing CANopen library sources. That project can be easily
added to MPLAB project as an external library, to be used in CANopen applications. Details about the
script’s usage can be found in CTESW SUM [RDg].

Source code distribution also contains pre-prepared MPLAB IDE packages.

After obtaining the library in MPLAB format, the project can be opened in MPLAB X IDE:

1% MPLAB X IDE v6.20

Eile Edit View MNavigate Source Refactor P

T Mew Project.. Ctrl+Shift+N
9 Mew File.. Ctrl+N
Open Project... Ctrl+Shift+0

')5' Open Project

E Look in: mplab e |‘=_°F
8= iibcanopen-mplab

Project Mame:
LibCANOpen

Niedawno uz...

Pulpit

Open Required Projects:

After opening the project, it’s recommended to verify that all the files are present, and correct toolchain
is used for building the project, as it’s not explicitly specified by the script.

Copyright 2025 N7 Space Sp. z 0. o.
ESA Contract No. 4000143237/23/NL/AS

CANopen Library Toolset Doc.

CANopen SW Library — Software User Manual Date:
SFACE Issue:

N7 Space Sp. z 0.0. Page:

€| MPLAB X IDE v6

LibCANOpen : LIbCANOpen

File Edit View Navigate Source Refacter Production Debug Team Tools Windoy

PSS

, (2 |LbcaNOpen
-

o] - By - B -

Projects xr Files IServios Tclassts

E-fg LibCANOpen
EJ Header Files
E| lely
E—J can

E‘] veih
E-(F co
E}- coapp
-[EF] compat
B-[IF ev
B[e
E-[IE 02
w-[iF tep
G- (F) utl
[}- Important Files
El-- Source Files
E—JE can

@ buf.c
@ msg.c
1 met.c
E—]E o

I8 e
IE-] cedo.c
- dev.c
- emey.c
@ nmt.c

1! Project Properties - LibCANOpen

@ socket.h

Categories:
@ General
@ File Indusion/Excusion
El- ¢ Conf: [LIbCANOpen
@ Building
B @ XC32 (Global Options)
o0 xc32as

xc32-gec
xc32-g++
xc324d
xc32-ar

o o e o

(o]

Analysis

Manage Configurations...

Manage Network Tools. ..

Configuration

Family:
All Families e
Connected Hardware Tool:

Mo Toal ~ | [] Show All

Device:
ATSAMV71Q21B ~

Supported Debug Header:

None

SAMVT1_DFP

-l

CMSIS

Compiler Toolchain:

[=-%C32 [Download Latest]

L ARM

2 (v4.45) [C:\Program Files\Microchip'pc32tv4. 45\bin]

Cancel

Apply Unlock Help

CAN-N7S-CANDP-SUM
2025-09-08

23

26 of 54

After selecting the compiler, the project can be built and included in other MPLAB X IDE projects.

It’s important to note that the include directory for LibCANopen must be manually specified in
application project, and should point to include/ subdirectory of generated MPLAB library project.

Copyright 2025 N7 Space Sp. z 0. o.

ESA Contract No. 4000143237/23/NL/AS

CANopen Library Toolset Doc. CAN-N7S-CANDP-SUM

CANopen SW Library — Software User Manual Date: 2025-09-08
SFPRCE Issue: 2.3
N7 Space Sp. z 0.0. Page: 27 of 54

11.3 Using the software on a typical task

11.3.1 Memory allocation

Many operations performed by the Library require allocation of some amount of memory when needed.
The Library contains a unified interface for handling memory allocation and deallocation. That interface
provides an opt-in method for hooking up any custom memory allocation scheme that might serve
project or application specific requirements.

The API for memory allocation is provided by the lely/util/memory.h header file. The most
important functions declared there are mem alloc and mem free responsible for allocating and
freeing memory, respectively. Both serve as the public interface for the chosen underlying allocator, that
has to be passed as an argument.

The generic interface is realized by the alloc vtbl structure that's mostly referenced through its
alloc_t type alias (see Listing 13).

Listing 13 —alloc_t allocator structure.

struct alloc_vtbl {

void *(*)Y(alloc_t *alloc, size_ t alignment, size_t size);
void (*)(alloc_t *alloc, void *ptr);

size t (*)Y(const alloc_t *alloc);

size t (*)(const alloc_t *alloc);

}s

It is the user's responsibility to provide all four functions that match the signatures of above mentioned
function pointers with the implementation of an application-specific allocator. In a later chapter we'll
cover an example implementation of such allocator.

Inside the Library, all references to the selected allocator are made through the can net t structure.
Therefore the user has to provide a pointer to the allocator when creating the CAN Network object as
shown in Listing 14.

Listing 14 —alloc_t and can net_t setup.

alloc_t* allocator
can_net_t* network

create_allocator(); // user-provided
can_net_create(allocator);

It is also possible to use the allocator manually, outside the Library code.

11.3.1.1 Default allocator

If no allocator is provided then the default one will be used inside the Library.

Listing 15 — Default (NULL) allocator.

void* allocated_memory = mem_alloc(NULL);

mem_free(NULL, allocated_memory);

The ECSS-compliant compilation of the Library provides an empty implementation of the default
memory allocator. In other compilation modes it is based on dynamic heap memory and is thus of very

Copyright 2025 N7 Space Sp. z 0. o.
ESA Contract No. 4000143237/23/NL/AS

CANopen Library Toolset Doc. CAN-N7S-CANDP-SUM

CANopen SW Library — Software User Manual Date: 2025-09-08
SFPRCE Issue: 2.3
N7 Space Sp. z 0.0. Page: 28 of 54

little use for resource-constrained projects. But it's worth noting that such behaviour of passing a null
pointer is well-defined (Listing 15).

The empty implementation available in ECSS-compliant compilation does not perform any allocation,
which makes most of the Library features unavailable. Hence the user is responsible for providing
allocator, either a custom one or properly configured pool allocator (11.3.1.2).

11.3.1.2 Custom pool allocator

A very likely popular use case is to use an arena-style allocator. The Library provides a utility structure
mempool that implements a very basic memory pool allocator. Listing 16 shows example use scheme.

Listing 16 — Pool allocator usage example.

<lely/co/type.h>
<lely/util/memory.h>
<lely/util/mempool.h>
/] ...
alloc_t* O {
const size_t POOL_SIZE = 128u * 1024u;
static co_unsigned8_t memory[POOL_SIZE] = {0};
static mempool pool;

return mempool_init(&pool, memory, POOL_SIZE);

}

Total allocated size and remaining pool capacity can be then queried using mem size and

mem capacity.

Above presented memory allocator is a very simple one. It uses 128kB of static memory in the
executable to provide storage for further on-demand allocation. It does not actually mark deallocated
memory as available and is thus unable to reuse it later. The Library itself doesn't create short-lived
objects in ECSS-compliant compilation, but a more complex memory allocation strategy might be
preferred by users, depending on their project needs.

11.3.2 Receiving and sending CAN frames

The Library provides an implementation of the CANopen protocol, which is a Layer 3 and above
network protocol, according to the OSI model. Below layers are not implemented, must be available
separately and their integration with the Library is expected to be provided by the user.

The Library uses a generic structure to represent CAN frames or messages. It consists of a 32-bit
unsigned integer to represent a CAN-ID (either 11 or 29 bit long), a byte for bit flags (e.g. to denote an
RTR frame), a byte to store the number of bytes in the data field and the data field itself (Listing 17).

Copyright 2025 N7 Space Sp. z 0. o.
ESA Contract No. 4000143237/23/NL/AS

CANopen Library Toolset Doc. CAN-N7S-CANDP-SUM

CANopen SW Library — Software User Manual Date: 2025-09-08
SFPRCE Issue: 2.3
N7 Space Sp. z 0.0. Page: 29 of 54

Listing 17 — can_msg structure representing CAN frame.

struct can_msg {
uint_least32_t id;
uint_least8 t flags;
uint_least8_t len;
uint_least8 t data[CAN_MSG_MAX_ LEN];

};

With CAN MSG MAX LEN being equal to either 8 or 64 depending on whether CAN FD support is
enabled. In ECSS compliance mode it is disabled and CAN frames can store up to 8 bytes of data.

It is the user's responsibility to create proper instances of the above explained data structure and to pass
them to the Library. Conversely, it's also the responsibility of the user to translate any instance provided
by the Library to the proper target representation that could be encoded on the wire.

In order to inform the Library that a new CAN frame was received and should be handled, one should
use the can _net recv function as shown in Listing 18.

Listing 18 — CAN frame receiving using can_net recv usage example.

<lely/can/msg.h>
<lely/can/net.h>
/] ...
alloc_t* allocator
can_net_t* network
/] ...
struct can_msg msg = prepare_message(); // user-provided
const int return_code = can_net_recv(network, &msg, 0);

create_allocator(); // user-provided
can_net_create(allocator);

In order to obtain a CAN frame to be sent from the Library, one should provide a callback function that
will be called with the frame every time the Library requests a frame to be sent. That function must
conform to the int (const struct can msg *msg, void *data) signature and can be installed
using can_net set send func. Listing 19 presents an example of callback setup

Listing 19 — CAN frame sending callback example.

// user-provided

int (const can_msg* msg, int bus_id, void* data) {
printf("SEND <%#x> <%#x>", msg->id, msg->flags);
return 0;

}

void O {

alloc_t* allocator = create_allocator(); // user-provided
can_net_t* network = can_net_create(allocator);
can_net_set_send_func(network, &send func, NULL);

/] ...

Presented code only prints on the standard output some details of the frame that the Library requested
to be sent. A production-level implementation should interpret all fields of msg and attempt to send them
on the actual CAN bus.

Copyright 2025 N7 Space Sp. z 0. o.
ESA Contract No. 4000143237/23/NL/AS

CANopen Library Toolset Doc. CAN-N7S-CANDP-SUM

CANopen SW Library — Software User Manual Date: 2025-09-08
SFPRCE Issue: 2.3
N7 Space Sp. z 0.0. Page: 30 of 54

11.3.3 SocketCAN frame translation

The former chapter explained the need for translating between a generic CAN frame format structure
provided by the Library and the target network stack. Choice of the latter is project-dependent. The
purpose of this chapter is to provide a concrete example using SocketCAN. SocketCAN is the default
driver for CAN networking stack in the Linux Kernel, therefore it should be quite popular. Additionally
the translation itself is pretty straightforward. This makes it a good candidate to use as an example.

Assuming that there is already an instance of struct can_ frame read from a SocketCAN socket, one
can execute the code from Listing 20 to produce a struct can msg that can be then provided to
can_net recv later.

Listing 20 — Example of can_msg creation from lower layer data (SocketCAN).

int (const struct can_frame* from,
struct can_msg* to) {
if (from->can_id & CAN_ERR_FLAG) {
return -1;

}
*to = CAN_MSG_INIT;

if (from->can_id & CAN_EFF_FLAG) {
to->id = from->can_id & CAN_EFF_MASK;
to->flags |= CAN_FLAG_IDE;

} else {
to->id = from->can_id & CAN_SFF_MASK;

}

if (from->can_id & CAN_RTR_FLAG) {
to->flags |= CAN_FLAG_RTR;
}

to->len = MIN(from->can_dlc, CAN_MAX_ LEN);

if (!(to->flags & CAN_FLAG_RTR)) {
memcpy (to->data, from->data, to->len);

}

return 0;

}

Translation in the other direction is equally straightforward. It's enough to reverse the performed
operations as shown in Listing 21.

Copyright 2025 N7 Space Sp. z 0. o.
ESA Contract No. 4000143237/23/NL/AS

CANopen Library Toolset Doc. CAN-N7S-CANDP-SUM

CANopen SW Library — Software User Manual Date: 2025-09-08
SFPRCE Issue: 2.3
N7 Space Sp. z 0.0. Page: 31of54

Listing 21 — Example of can_msg transformation to lower layer data (SocketCAN).

void (const struct can_msg* from,
struct can_frame* to) {
memset(to, @, sizeof(*to));

to->can_id = from->id;

if (from->flags & CAN_FLAG_IDE) {
to->can_id &= CAN_EFF_MASK;
to->can_id |= CAN_EFF_FLAG;

} else {
to->can_id &= CAN_SFF_MASK;

}

to->can_dlc = MIN(from->len, CAN_MAX_LEN);

if (from->flags & CAN_FLAG_RTR) {
to->can_id |= CAN_RTR_FLAG;
} else {
memcpy (to->data, from->data, to->can_dlc);
}
}

After calling the above function, one has an instance of struct can frame that is ready to be
written to the SocketCAN socket.

11.3.4 Setting the time / external clock

The Library does not assume a specific clock on a target platform. It is entirely the responsibility of the
user to provide current time information to the Library. As with the chosen memory allocator, current
time is a property of the CAN network interface. One can set it using can_net set time. The function
accepts a value of standard timespec type, and if unavailable the <lely/compat/time.h> header
file provides a compatible definition. It's a simple structure of two values tv_sec and tv_nsec to
represent a time point using number of seconds and nanoseconds in between them. The time provided
should come from a monotonic clock i.e. the provided value should never be smaller than the one
provided before.

Listing 22 — CAN network time setting using can_net set time example.

<time.h>
/...
void O A
struct timespec ts = {@};
clock_gettime(CLOCK_MONOTONIC, &ts);

const int rc = can_net_set_time(&ts);
// user-provided code to handle a non-zero value of rc

}

Calling can _net set time function (example shown in Listing 22) may invoke multiple registered
timer callback functions. For example it might trigger sending a CANopen SYNC message if there is a

Copyright 2025 N7 Space Sp. z 0. o.
ESA Contract No. 4000143237/23/NL/AS

CANopen Library Toolset Doc. CAN-N7S-CANDP-SUM

CANopen SW Library — Software User Manual Date: 2025-09-08
SFPRCE Issue: 2.3
N7 Space Sp. z 0.0. Page: 32 of54

SYNC producer service running. One of those callback functions may fail, that's the reason the
can _net set time function provides a return code.

The time point at which the next timer callback function will be triggered can be queried. The CAN
network interface provides another callback that can be set using the can net set next func
function, shown in example on Listing 23. This way user code can schedule time updates for proper
moments, to achieve the best timer events precision.

Listing 23 — CAN network callback for re-scheduling time update.

int (const timespec* ts, void* data) {
printf("Next trigger at: %1d.%ld\n", ts->tv_sec, ts->tv_nsec);
return 0;

}

/] ...
can_net_set_next_func(network, &next_func, NULL);

/...
update_time(); // user-provided, calls can_net set time

11.3.5 Device and Object Dictionary

Two most central concepts in the CANopen protocol are the CANopen Device and the Object Dictionary
that's part of the former. Typically in a single application there will be one instance of the device
structure that contains its own dictionary. The dictionary is a set of objects that can be accessed using a
16-bit index. Each object can represent a singular value, an array or a record of up to 255 smaller sub-
object values. Part of the dictionary is used to configure the CANopen device communication parameters
(index range between 0x1000 and 0x 1£ff) and part of it is available for storing application specific data.

Usually the dictionary is initialized based on the contents of EDS (Electronic Data Sheet) or DCF
(Device Configuration File) files. This tutorial shows how to create such entries manually using the
provided APIL.

The device, object and sub-object instances can be allocated using a custom memory allocator, like the
one presented in a former chapter. But for the sake of simplicity, static memory will be used to provide
storage for those instances.

First one needs to create and initialize a device. Code in Listing 24 does that using a Node-ID of 0x01.

Listing 24 — CANopen device (co_dev_t) initialization example.

<lely/co/detail/dev.h>

static co_dev_t device;

int O A

co_dev_init(&device, 0x01u);

}

With the device ready, it's time to create an entry in its object dictionary — see Listing 25.

Copyright 2025 N7 Space Sp. z 0. o.
ESA Contract No. 4000143237/23/NL/AS

CANopen Library Toolset Doc. CAN-N7S-CANDP-SUM

CANopen SW Library — Software User Manual Date: 2025-09-08
SFPRCE Issue: 2.3
N7 Space Sp. z 0.0. Page: 33 of 54

Listing 25 — CANopen Object Dictionary entry creation example.

<lely/co/detail/obj.h>
/] ...

static struct {
co_unsigned32_t subo;
} valuelee5 = {
.subo = 0x40000080;

};

static co_obj t objectl1005;
static co_sub_t object1005subo;

int 0O {
/] ...

co_obj_init(&object1005, 0x1005u, &valueldd5, sizeof(valueld05));
co_sub_init(&object1005sub@, ©x00u, CO_DEFTYPE_UNSIGNED32,
&valuel@05.subg);

co_dev_insert_obj(&device, &objectl1005);
co_obj_insert_sub(&object1005, &object1005sub0);

}

The snippet from Listing 25 creates an object dictionary part that represents the COB-ID SYNC
message object with the default CAN-ID value (0x80) and the gen. bit set. The value1005 structure
serves as the storage for object and sub-object values, the object1005 and object1005sub0 provide
storage for object metadata like index or data type.

11.3.6 dcf2dev

Manually specifying entire contents of the Object Dictionary is a laborious and error-prone process. To
alleviate that, CANSW includes a Python-based tool dcf2dev, that can optionally be used to transform
human-readable Device Configuration Files (DCF) into C code that initializes a device with its object
dictionary fully populated. It's located in the python/dcf tools directory. In order to make use of it,
it has to be installed.

A standard setuptools installation process is supported as shown in Listing 26.

Listing 26 — Standard dcf2dev installation using setuptools.

$ cd python/dcf-tools
$ python setup.py install

It is highly recommended to perform above in a virtual environment, so the tool will not collide with
other Python modules preinstalled in the user’s system. For example one can use module venv available
in Python 3.3 and newer, as shown in Listing 27.

Copyright 2025 N7 Space Sp. z 0. o.
ESA Contract No. 4000143237/23/NL/AS

CANopen Library Toolset Doc. CAN-N7S-CANDP-SUM

CANopen SW Library — Software User Manual Date: 2025-09-08
SFPRCE Issue: 2.3
N7 Space Sp. z 0.0. Page: 34 of 54

Listing 27 — dcf2dev installation in virtual environment (using venv).

R i

cd ~/<user-folder-to-store-venv-files>
python3 -m venv my_venv

source my_venv/bin/activate

cd <path-to-CANSW>/python/dcf_tools
python3 setup.py install

Successful installation of dcf2dev can be verified by invoking the tool (see Listing 28), which should
return its usage instructions.

Listing 28 — dcf2dev help command.

E

dcf2dev --help

After installation the tool can be used to transform a DCF file into a pair of source and header files. It
accepts a name of the input file and a module name to use in generated code — see Listing 29.

Listing 29 — dcf2dev usage.

E

dcf2dev [--header] [--include-config] file_name.dcf module_name |

Results are printed on standard output, one may redirect them straight to a regular file as in Listing 30.

Listing 30 — dcf2dev usage example.

$
$

dcf2dev --header tutorial.dcf tutorial > tutorial.h
dcf2dev --include-config tutorial.dcf tutorial > tutorial.c

If user's application uses a build system to pass configuration macros using compiler flags instead of the
config.h header file, then the option --include-config should not be used.

For example, after using the tool, following the exact commands mentioned in Listing 30, on a minimal
DCEF from Listing 31, it will generate a C header file and a matching C code source file, shown in Listing
32 and Listing 33 respectively.

Listing 31 — Minimal DCF file example.

[

[

VendorName=
VendorNumber=0
ProductName=
ProductNumber=0
RevisionNumber=0
OrderCode=
BaudRate_10=0
BaudRate_20=0
BaudRate_50=0
BaudRate_125=0
BaudRate_250=0
BaudRate_500=0
BaudRate_800=0
BaudRate_1000=0

SupportedObjects=3
1=0x1000

]

]

Copyright 2025 N7 Space Sp. z 0. o.
ESA Contract No. 4000143237/23/NL/AS

CANopen Library Toolset Doc. CAN-N7S-CANDP-SUM

CANopen SW Library — Software User Manual Date: 2025-09-08
SFPRCE Issue: 2.3
N7 Space Sp. z 0.0. Page: 35 o0f54
2=0x1001
3=0x1018
[OptionalObjects]

SupportedObjects=0

[ManufacturerObjects]
SupportedObjects=0

[1000]
ParameterName=Device type
DataType=0x0007
AccessType=ro

[1e01]

ParameterName=Error register
DataType=0x0005
AccessType=ro

[1018]

SubNumber=5
ParameterName=Identity object
ObjectType=0x09

[1018sub@]

ParameterName=Highest sub-index supported
DataType=0x0005

AccessType=const

DefaultValue=0x4

[1018subl]
ParameterName=Vendor-1D
DataType=0x0007
AccessType=ro

[1018sub2]
ParameterName=Product code
DataType=0x0007
AccessType=ro

[1018sub3]
ParameterName=Revision number
DataType=0x0007

AccessType=ro

[1018sub4]
ParameterName=Serial number
DataType=0x0007
AccessType=ro

Copyright 2025 N7 Space Sp. z 0. o.
ESA Contract No. 4000143237/23/NL/AS

CANopen Library Toolset Doc. CAN-N7S-CANDP-SUM

CANopen SW Library — Software User Manual Date: 2025-09-08
SFPRCE Issue: 2.3
N7 Space Sp. z 0.0. Page: 36 of 54

Listing 32 — Example of header file generated by dcf2dev.

#ifndef TUTORIAL_H_GENERATED_
#define TUTORIAL_H_GENERATED_

#if TLELY_NO_MALLOC

#terror Static object dictionaries are only supported when dynamic memory
allocation is disabled.

#endif

#include <lely/co/co.h>
#ifdef __cplusplus
extern "C" {
#endif
co_dev_t * tutorial init(void);
#ifdef __cplusplus

}
#tendif

#endif // TUTORIAL_H_GENERATED_

Listing 33 — Excerpts from example C source file generated by dcf2dev.

#ifdet HAVE_CONFIG_H
#include <config.h>
#endif

#if TLELY_NO_MALLOC

#terror Static object dictionaries are only supported when dynamic memory
allocation is disabled.

#tendif

#include <lely/co/detail/dev.h>
#include <lely/co/detail/obj.h>
#include <lely/util/cmp.h>

/] ...

// static definitions of all required data structures and their instances

/] ...

co_dev_t *
tutorial_init(void) {
static co_dev_t *dev = NULL;
if (ldev) {
dev = &tutorial;

co_dev_insert_obj(&tutorial, &tutorial 1000);
co_obj_insert_sub(&tutorial_1000, &tutorial_1000sub0);

co_dev_insert_obj(&tutorial, &tutorial 1001);

Copyright 2025 N7 Space Sp. z 0. o.
ESA Contract No. 4000143237/23/NL/AS

CANopen Library Toolset Doc. CAN-N7S-CANDP-SUM

CANopen SW Library — Software User Manual Date: 2025-09-08
SFPRCE Issue: 2.3
N7 Space Sp. z 0.0. Page: 37 of 54

co_obj_insert_sub(&tutorial 1001, &tutorial 1001sub@);

co_dev_insert_obj(&tutorial, &tutorial 1018);

co_obj_insert_sub(&tutorial 1018, &tutorial 1018sub@);

co_obj_insert_sub(&tutorial 1018, &tutorial 1018subl);

co_obj_insert_sub(&tutorial 1018, &tutorial_ 1018sub2);

co_obj_insert_sub(&tutorial 1018, &tutorial 1018sub3);

co_obj_insert_sub(&tutorial 1018, &tutorial 1018sub4);
}

return dev;

}

User code should #include the generated tutorial.h file and call function tutorial init () to
obtain a ready to use device instance. The tutorial.c file should be separately compiled and its
generated object code linked into the application.

Even though the generated source code is in the C Programming Language and must be compiled as
such, the generated header file is prepared to also be consumed by application code written in C++.

11.3.7 NMT Master and Slave

Based on the foundations already established by preceding tutorial chapters, it's time to create a working
example with two nodes based on CANSW exchanging data with each other. It will involve an
application serving as an NMT Master node and the other one filling the role of NMT Slave. The former
will produce and send SYNC messages and receive NMT Heartbeat messages. The latter will have a
reverse responsibility, it will consume SYNC messages and produce heartbeats. This chapter serves as
a basis for subsequent chapters, which cover incremental additions to more CANopen-based tasks.

First we will start with minimalistic DCF files for both Master (Listing 34) and Slave (Listing 35)
applications

Listing 34 — Minimal NMT Master DCF example.

[]

VendorName=European Space Agency
VendorNumber=0x0000033E
BaudRate_10=1

BaudRate_20=1

BaudRate_50=1

BaudRate_125=1

BaudRate_250=1

BaudRate_500=1

BaudRate_800=1

BaudRate_1000=1

[]
NodeID=0x01

[]
SupportedObjects=3

1=0x1000
2=0x1001
3=0x1018

Copyright 2025 N7 Space Sp. z 0. o.
ESA Contract No. 4000143237/23/NL/AS

CANopen Library Toolset Doc. CAN-N7S-CANDP-SUM
CANopen SW Library — Software User Manual Date: 2025-09-08
SFEACE Issue: 2.3

N7 Space Sp. z 0.0. Page: 38 of 54

[OptionalObjects]
SupportedObjects=5
1=0x1005

2=0x1006

3=0x1016

4=0x1F80

5=0x1F81

[ManufacturerObjects]
SupportedObjects=0

[1000]
ParameterName=Device type
DataType=0x0007
AccessType=ro

[1001]

ParameterName=Error register
DataType=0x0005
AccessType=ro

[1005]

ParameterName=COB-ID SYNC message
DataType=0x0007

AccessType=rw
DefaultValue=0x40000080

[1e06]

ParameterName=Communication cycle period
DataType=0x0007

AccessType=rw

DefaultValue=500000

[1016]

SubNumber=2

ParameterName=Consumer heartbeat time
ObjectType=0x09

[1016sub@]

ParameterName=Highest sub-index supported
DataType=0x0005

AccessType=const

DefaultValue=0x01

[10165ubl]

ParameterName=Consumer heartbeat time
DataType=0x0007

AccessType=rw
DefaultValue=0x00020226

[1018]
SubNumber=5

Copyright 2025 N7 Space Sp. z 0. o.
ESA Contract No. 4000143237/23/NL/AS

CANopen Library Toolset Doc. CAN-N7S-CANDP-SUM

CANopen SW Library — Software User Manual Date: 2025-09-08
SFPRCE Issue: 2.3
N7 Space Sp. z 0.0. Page: 39 of 54

ParameterName=Identity object
ObjectType=0x09

[1018sub@]

ParameterName=Highest sub-index supported
DataType=0x0005

AccessType=const

DefaultValue=0x04

[1018subl]
ParameterName=Vendor-ID
DataType=0x0007
AccessType=ro
DefaultValue=0x0000033E

[1018sub2]
ParameterName=Product code
DataType=0x0007
AccessType=ro

[1018sub3]
ParameterName=Revision number
DataType=0x0007
AccessType=ro

[1018sub4]
ParameterName=Serial number
DataType=0x0007
AccessType=ro

[1F8e]

ParameterName=NMT startup
DataType=0x0007
AccessType=rw
ParameterValue=0x00000001

[1F81]

ParameterName=NMT slave assignment
ObjectType=0x08

DataType=0x0007

AccessType=rw

CompactSubObj=2

[1F81Value]
NrOfEntries=1
2=0x00000001

Listing 35 — Minimal NMT Slave DCF example.

[DeviceInfo]

VendorName=European Space Agency
VendorNumber=0x0000033E
BaudRate_10=1

Copyright 2025 N7 Space Sp. z 0. o.
ESA Contract No. 4000143237/23/NL/AS

CANopen Library Toolset Doc. CAN-N7S-CANDP-SUM

CANopen SW Library — Software User Manual Date: 2025-09-08
SFPRCE Issue: 2.3
N7 Space Sp. z 0.0. Page: 40 of 54

BaudRate_20=1

BaudRate_50=1

BaudRate_ 125=1
BaudRate_250=1
BaudRate_ 500=1
BaudRate_800=1
BaudRate_1000=1

[DeviceComissioning]
NodeID=0x02

[MandatoryObjects]
SupportedObjects=3
1=0x1000
2=0x1001
3=0x1018

[OptionalObjects]
SupportedObjects=3
1=0x1005

2=0x1017

3=0x1F80

[ManufacturerObjects]
SupportedObjects=0

[1e00]
ParameterName=Device type
DataType=0x0007
AccessType=ro

[1e01]

ParameterName=Error register
DataType=0x0005
AccessType=ro

[1005]

ParameterName=COB-ID SYNC message
DataType=0x0007

AccessType=rw
DefaultValue=0x00000080

[1017]

ParameterName=Producer heartbeat time
DataType=0x0006

AccessType=rw

DefaultValue=500

[1018]

SubNumber=5
ParameterName=Identity object
ObjectType=0x09

Copyright 2025 N7 Space Sp. z 0. o.
ESA Contract No. 4000143237/23/NL/AS

CANopen Library Toolset Doc. CAN-N7S-CANDP-SUM

CANopen SW Library — Software User Manual Date: 2025-09-08
SFPRCE Issue: 2.3
N7 Space Sp. z 0.0. Page: 41 of 54
[]

ParameterName=Highest sub-index supported
DataType=0x0005

AccessType=const

DefaultValue=0x04

[]

ParameterName=Vendor-1ID
DataType=0x0007
AccessType=ro
DefaultValue=0x0000033E

[]

ParameterName=Product code
DataType=0x0007
AccessType=ro

[]

ParameterName=Revision number
DataType=0x0007
AccessType=ro

[]

ParameterName=Serial number
DataType=0x0007
AccessType=ro

[]

ParameterName=NMT startup
DataType=0x0007
AccessType=rw
DefaultValue=0x00000000

Above files should be used as input to dcf2dev to generate appropriate C code that can be compiled
and linked into the Master and Slave applications, respectively. With that done, one can start
implementing the basic application code structure, starting with necessary #include directives listed
in Listing 36.

Copyright 2025 N7 Space Sp. z 0. o.
ESA Contract No. 4000143237/23/NL/AS

SPRCE

CANopen Library Toolset Doc. CAN-N7S-CANDP-SUM

CANopen SW Library — Software User Manual Date: 2025-09-08
Issue: 2.3
N7 Space Sp. z 0.0. Page: 42 of 54

Listing 36 — Necessary #include directives for minimal NMT implementation.

"config.h" // generated while configuring the Library

<signal.h>
<stdio.h>
<time.h>

<lely/can/msg.h>
<lely/can/net.h>

<lely/co/dev.h>
<lely/co/obj.h>
<lely/co/nmt.h>

<lely/util/error.h>
<lely/util/memory.h>
<lely/util/mempool.h>

Listing 37 shows 3 functions the implement the requirements of a hardware abstraction layer that needs
to be provided by the user. One function is extracted with common code for observability purposes.
Everything was explained in previous chapters, but the receive message needs an additional
comment. It is assumed in this tutorial that the user provided receive convert function returns CAN
frame from internal hardware buffer or NULL if no CAN frame was received by the underlying hardware.

Copyright 2025 N7 Space Sp. z 0. o.
ESA Contract No. 4000143237/23/NL/AS

CANopen Library Toolset Doc. CAN-N7S-CANDP-SUM

CANopen SW Library — Software User Manual Date: 2025-09-08
SFPRCE Issue: 2.3
N7 Space Sp. z 0.0. Page: 43 of 54

Listing 37 — Hardware abstraction layer implementation example.

void (const char* func, const struct can_msg* msg) {
printf("%s <%#x> <%#x>", func, msg->id, msg->flags);

if (msg->len != @) printf(" DATA:");
for (size_t i = @; i < msg->len; ++i) printf(" ox%02x", msg->data[i]);

printf("\n");
}

int (const struct can_msg* msg, int bus_id, void* data) {
print_msg("SEND", msg);
return convert_and_send(msg); // user-provided

}

void (can_net_t* network) {
struct can_msg* msg = receive_convert(); // user-provided
if (msg == NULL)
return;
print_msg("RECV", msg);
can_net_recv(network, msg);

}

void (can_net_t* network) {
struct timespec ts;
get_current_time(&ts); // user-provided
can_net_set_time(network, &ts);

}

With a very barebone HAL described above, an example framework for both applications can be
introduced — see Listing 38. The only difference between Master and Slave applications is in the use of
dcf2dev generated code. After a small setup, the applications are run until the STIGINT signal is
received. The main loop checks for new data on CAN bus, reads new frame if available, and updates
the clock. This basic loop is a good fit for tutorial purposes but production grade programs will likely
use a more complex event-loop based solution.

The final code block in the listing is responsible for creating and starting an NMT service instance.
Additionally two indication functions are set for observability purposes — see Listing 39.

After building both applications and running them for a while, it should be possible to observe
continuous data exchange between them. Example output can be found in Listing 40. It can be seen in
it that an NMT boot-up was sent and later an NMT "reset communication" command was sent. Heartbeat
and state indication functions are called. SYNC message (CAN-ID 0x80) is being sent and Heartbeat
message originated at the slave node is received.

Copyright 2025 N7 Space Sp. z 0. o.
ESA Contract No. 4000143237/23/NL/AS

CANopen Library Toolset Doc. CAN-N7S-CANDP-SUM

CANopen SW Library — Software User Manual Date: 2025-09-08
SFPRCE Issue: 2.3
N7 Space Sp. z 0.0. Page: 44 of 54

Listing 38 — Basic example of NMT service framework for Master/Slave application.

// necessary #include directives, see Listing 36
"dcf_nmt.h" // from dcf2dev

static volatile sig_atomic_t last_signal;

void (int sig) { last_signal = sig; }
// system integration functions, see Listing 37

// NMT Service indication functions, see Listing 39

co_nmt_t* (co_dev_t* device, can_net_t* network) {
co_nmt_t* nmt = co_nmt_create(network, device);
assert(nmt != NULL);

co_nmt_set_hb_ind(nmt, &hb_ind, NULL);
co_nmt_set_st_ind(nmt, &st_ind, NULL);

co_nmt_cs_ind(nmt, CO_NMT_CS_RESET_NODE);
}

int O {
signal(SIGINT, &signal_handler);

co_dev_t* device = dcf_nmt_init(); // from dcf2dev
alloc_t* alloc = create_allocator();

can_net_t* network = can_net_create(alloc);
can_net_set_send_func(network, &send_func, NULL);

co_nmt_t* nmt = setup_nmt(device, network);
set_current_time(network);
while (last_signal == @) {

receive_message(network);
set_current_time(network);

}

co_nmt_destroy(nmt);
can_net_destroy(network);

return 0;

Listing 39 — Basic NMT service indication functions example.

void (co_nmt_t* nmt, co_unsigned8 t id, int state, int reason,
void* data) {
printf("HB: id=<%d> state=<%d> reason=<%d>\n", id, state, reason);

}

void (co_nmt_t* nmt, co_unsigned8 t id, co_unsigned8_t st,
void* data) {
printf("ST: id=<%d> st=<%d>\n", id, st);

}

Copyright 2025 N7 Space Sp. z 0. o.
ESA Contract No. 4000143237/23/NL/AS

CANopen Library Toolset Doc. CAN-N7S-CANDP-SUM

CANopen SW Library — Software User Manual Date: 2025-09-08
SFPRCE Issue: 2.3
N7 Space Sp. z 0.0. Page: 45 of 54

Listing 40 — Sample output from the NMT master node application.

ST: id=<1> st=<0>

ST: id=<1> st=<0>

SEND <0x701> <0> DATA: 0x00

ST: id=<1> st=<127>

SEND <@> <0> DATA: 0x82 0x00
RECV <@x702> <0> DATA: ox7f

HB: id=<2> state=<0> reason=<1>
ST: id=<2> st=<127>

RECV <0x702> <0> DATA: 0x00

HB: id=<2> state=<0> reason=<1>
ST: id=<2> st=<0>

ST: id=<2> st=<0>

SEND <0x80> <0>

SEND <0x80> <0>

RECV <0x702> <0> DATA: oOx7f

11.3.8 PDO

This chapter shows how to configure a simple PDO-based data transmission between two CANopen
nodes. Based on the foundation built in former chapter, a manufacturer-specific object is added to both
master and slave node applications. Master uses 0x3000 as its index and has it mapped to a synchronous
cyclic TPDO. Slave on the other hand uses 0x4000 for its object, and has it mapped to a synchronous
RPDO that matches the master's TPDO. The master application built in former chapter produces a SYNC
message and newly introduced PDO-based data transmission is synchronized to both sending and
reception of that message. Listing 41 presents necessary modifications of the Master’s DCF file from
previous chapter to add simple PDO service.

Listing 41 — NMT Master DCF file modifications for example PDO service.

...

[]
SupportedObjects=7
1=0x1005

2=0x1006

3=0x1016

4=0x1F80

5=0x1F81

6=0x1800

7=0x1A00

[]
SupportedObjects=1

1=0x3000

...

[]

ParameterName=TutorialMasterTime
DataType=0x0007 # 32-bit unsigned integer
AccessType=rw

DefaultValue=0

PDOMapping=1

Copyright 2025 N7 Space Sp. z 0. o.
ESA Contract No. 4000143237/23/NL/AS

CANopen Library Toolset Doc. CAN-N7S-CANDP-SUM

CANopen SW Library — Software User Manual Date: 2025-09-08
SFPRCE Issue: 2.3
N7 Space Sp. z 0.0. Page: 46 of 54

[]
SubNumber=3

ParameterName=TPDO communication parameter
ObjectType=0x09

[]

ParameterName=Highest sub-index supported
DataType=0x0005

AccessType=const

DefaultValue=0x02

[]
ParameterName=COB-ID used by TPDO

DataType=0x0007
AccessType=rw
DefaultValue=$NODEID+0x180

[]

ParameterName=Transmission type
DataType=0x0005

AccessType=rw

DefaultValue=0x01 # cyclic every sync

[]

ParameterName=TPDO mapping parameter
ObjectType=0x09

DataType=0x0007

AccessType=rw

CompactSubObj=1

[]
NrOfEntries=1

1=0x30000020

A basic manufacturer-specific object 0x3000 representing a 32-bit unsigned integer is added with PDO
mapping enabled. To configure the TPDO service, objects 0x1800 and 0x1A00 are also added. The
0x3000 object is mapped in 0x1A00. The COB-ID used by object 0x1800 is equal to 0x181, the RPDO
service on the slave node will use the same value.

After regenerating the device initialization code using dcf2dev, only a small modification is necessary
to master application code as presented in Listing 42.

Copyright 2025 N7 Space Sp. z 0. o.
ESA Contract No. 4000143237/23/NL/AS

CANopen Library Toolset Doc. CAN-N7S-CANDP-SUM

CANopen SW Library — Software User Manual Date: 2025-09-08
SFPRCE Issue: 2.3
N7 Space Sp. z 0.0. Page: 47 of 54

Listing 42 — Master application modifications for example PDO service.

void (co_dev_t* device) {
co_obj_t* obj = co_dev_find_obj(device, ©x3000u);
if (lobj)
return;

const co_unsigned32_t value = time(NULL);

co_obj_set_val(obj, ©x00u, &value, sizeof(value));
}
/...
// main loop
while (last_signal == 0) {
receive_message(network);
update_time_object(device); // newly added line
set_current_time(network);

}

Above code snippet looks for the 0x3000 object and stores the current UNIX timestamp value in it on
every loop iteration. This is the information that will be later read by the slave application.

After building and running the application, the output from Listing 43 should be visible. TPDO is
transmitted right after sending a SYNC message and it can be seen that the value sent is slowly being
incremented by one. SYNC is configured to be sent every 500 milliseconds, which explains why the
same timestamp value is sent twice.

Listing 43 — Output from running example Master application with TPDO service.

SEND <0x80> <0>
SEND <0x181> <0> DATA: Oxc7 ©x7a ©xd8 0x60
SEND <0x80> <0>
SEND <0x181> <0> DATA: Oxc8 ©x7a 0xd8 0x60
SEND <0x80> <0>
SEND <0x181> <0> DATA: Oxc8 ©x7a ©xd8 0x60
SEND <0x80> <0>
SEND <0x181> <0> DATA: 0xc9 ©x7a 0xd8 0x60

It's time to move to the application running on the Slave node. Listing 44 presents the changes that need
to be made to its DCF file.

Copyright 2025 N7 Space Sp. z 0. o.
ESA Contract No. 4000143237/23/NL/AS

CANopen Library Toolset Doc. CAN-N7S-CANDP-SUM
CANopen SW Library — Software User Manual Date: 2025-09-08
SFRCE Issue: 2.3
N7 Space Sp. z 0.0. Page: 48 of 54
Listing 44 — NMT Slave DCF file modifications for example PDO service.

...

[OptionalObjects]

SupportedObjects=5

1=0x1005

2=0x1017

3=0x1F80

4=0x1400

5=0x1600

[ManufacturerObjects]

SupportedObjects=1

1=0x4000

...

[4000]

ParameterName=TutorialMasterTime
DataType=0x0007 # 32-bit unsigned integer
AccessType=rw

DefaultValue=0

PDOMapping=1

[1400]

SubNumber=3

ParameterName=RPDO communication parameter
ObjectType=0x09

[1400sub0]

ParameterName=Highest sub-index supported
DataType=0x0005

AccessType=const

DefaultValue=0x02

[1400subl]

ParameterName=COB-ID used by RPDO
DataType=0x0007

AccessType=rw

DefaultValue=0x181

[1400sub2]
ParameterName=Transmission type
DataType=0x0005

AccessType=rw
DefaultValue=0x00

[1600]

ParameterName=RPDO mapping parameter
ObjectType=0x09

DataType=0x0007

AccessType=rw

CompactSubObj=2

[1600Value]

Copyright 2025 N7 Space Sp. z 0. o.
ESA Contract No. 4000143237/23/NL/AS

CANopen Library Toolset Doc. CAN-N7S-CANDP-SUM

CANopen SW Library — Software User Manual Date: 2025-09-08
SFPRCE Issue: 2.3
N7 Space Sp. z 0.0. Page: 49 of 54

NrOfEntries=1
1=0x40000020

As with the Master application, a basic manufacturer-specific object representing a 32-bit unsigned
integer is added with PDO mapping enabled. The only difference is that a different object index is used.
To configure the RPDO service, objects 0x1400 and 0x1600 are also added. The 0x4000 object is then
mapped in 0x1600. The COB-ID used by object 0x1400 is the same as the one used by Master's TPDO
service.

Changes necessary for application code on the slave node are also quite small —see Listing 45. A custom
download indication function for the 0x4000 object is set. That allows the application code to be notified
on any writes made to the object. The tutorial uses it to simply print the received value. The co _sub_dn
function performs the actual write of the received value into the object.

Listing 45 — Slave application modifications for example PDO service.

co_unsigned32_t (co_sub_t* sub, struct co_sdo_req* req,
co_unsigned32_t ac, void* data) {
if (ac) return ac;

co_sub_on_dn(sub, req, &ac);

const co_unsigned32_t time_on _master = co_sub_get val u32(sub);
printf("Time on master is %u\n", time_on_master);

return ac;

}
void (co_dev_t* device) {
co_obj_t* obj = co_dev_find_obj(device, 0x4000u);
if (obj)
co_obj_set_dn_ind(obj, &tutorial sub_dn_ind, NULL);
}
/...

co_nmt_t* nmt = setup_nmt(device, network);
set_4000_dn_ind(device); // new line
set_current_time(network);

Assuming that the master application is still running, the slave application should now output messages
similar to the ones in Listing 46.

Listing 46 — Output from running example Slave application with RPDO service.

RECV <0x181> <0> DATA: 0xd9 Ox7c 0xd8 0x60
RECV <0x80> <0>

Time on master is 1624800473

RECV <0x181> <0> DATA: Oxda ©x7c 0xd8 0x60
SEND <©x702> <0> DATA: Ox05

RECV <0x80> <0>

Time on master is 1624800474

Copyright 2025 N7 Space Sp. z 0. o.
ESA Contract No. 4000143237/23/NL/AS

CANopen Library Toolset Doc. CAN-N7S-CANDP-SUM

CANopen SW Library — Software User Manual Date: 2025-09-08
SFPRCE Issue: 2.3
N7 Space Sp. z 0.0. Page: 50 of 54

It can be seen that an RPDO is received, but it is only acted upon after receiving a SYNC message.
That's when the custom indication function presented above is called and the received value is stored.

11.3.9 Client SDO

Because the 0x3000 object on the Master application is small and it takes only 4 bytes to represent its
value, an expedited SDO transfer can also be used to obtain it upon request. There is a simple
modification needed on the Slave application to enable a Client SDO Service, the 0x1280 object needs
to be configured — see Listing 47.

Listing 47 — NMT Slave DCF file modifications for example Client SDO service.

...

[1
SupportedObjects=6
...

6=0x1280

...

[]
SubNumber=4

ParameterName=SDO client parameter
ObjectType=0x09

[]

ParameterName=Highest sub-index supported
DataType=0x0005

AccessType=const

DefaultValue=0x03

[]

ParameterName=COB-ID client -> server (tx)
DataType=0x0007

AccessType=rw

DefaultValue=0x601

[]

ParameterName=COB-ID server -> client (rx)
DataType=0x0007

AccessType=rw

DefaultValue=0x581

[]

ParameterName=Node-ID of the SDO server
DataType=0x0005

AccessType=rw

DefaultValue=0x01

Given the above, one needs to access the CSDO service instance from the NMT instance and submit an
upload request with the object index on the Master node, as shown in example method in Listing 48.
Server SDO instance is already running on the Master node. The request can be submitted at any time
the CSDO service is idle.

Copyright 2025 N7 Space Sp. z 0. o.
ESA Contract No. 4000143237/23/NL/AS

CANopen Library Toolset Doc. CAN-N7S-CANDP-SUM

CANopen SW Library — Software User Manual Date: 2025-09-08
SFPRCE Issue: 2.3
N7 Space Sp. z 0.0. Page: 51 of54

Listing 48 — Example code performing SDO request using Client SDO in Slave application.

void (co_nmt_t* nmt) {
co_csdo_t* csdo = co_nmt_get_csdo(nmt, 1);
assert(csdo != NULL);

const int rc = co_csdo_up_req(csdo, 0x3000, 0x00, NULL, &csdo_up_con, NULL);
if (rc 1= 0) {
printf("!! Failed to submit an SDO upload request due to error: %u\n",
get_errnum());
}
}

csdo_up_con is the user-provided upload confirmation function that will be called once the submitted
request is finished, either successfully or not. For this tutorial definition from Listing 49 is used. First
the abort code is checked. If it has a non-zero value, it means there was a failure and it should be
inspected. Otherwise there is an attempt to read the value. We know that the 0x3000 object on the Master
node is a 32-bit unsigned integer so exactly 4 bytes of data representing a UNIX timestamp are expected.

Listing 49 — Example code of SDO confirmation function for Client SDO in Slave application.

void (co_csdo_t* sdo, co_unsignedl6_t idx,
co_unsigned8 t subidx, co_unsigned32_t ac,
const void* ptr, size_t n, void* data) {

if (ac !=0) {
printf("CSDO received a non-zero abort code <%#x>\n", ac);
return;

}

co_unsigned32_t val = Qu;
const uint_least8 t* buf ptr = (const uint_least8 t*)ptr;
const co_unsigned32_t bytes_read =
co_val read(CO_DEFTYPE_UNSIGNED32, &val, buf_ptr, buf_ptr + n);

printf("CSDO received %u bytes representing a value of %u\n", bytes_read,
val);

}

If everything goes smoothly a similar to the output from Listing 50 is expected. However, if for example
the Master application is started after the SDO request was sent, a “Resource not available: SDO
connection” (0x060A0023) abort code is passed to the confirmation function — see Listing 51.

Listing 50 — Example output from Slave application running Client SDO service.

SEND <@x601> <0> DATA: 0x40 0x00 Ox30 Ox00 Ox00 0x00 Ox00 0x00
RECV <@x581> <0> DATA: Ox43 Ox00 Ox30 0x00 Ox7a Oxfl Oxd8 0x60
CSDO received 4 bytes representing a value of 1624830330

Listing 51 — Example error report from Slave application running Client SDO service.

CSDO received a non-zero abort code <0x60a0023>

Copyright 2025 N7 Space Sp. z 0. o.
ESA Contract No. 4000143237/23/NL/AS

CANopen Library Toolset Doc. CAN-N7S-CANDP-SUM

CANopen SW Library — Software User Manual Date: 2025-09-08
SFPRCE Issue: 2.3
N7 Space Sp. z 0.0. Page: 52 of 54

12 Analytical Index

N/A

Copyright 2025 N7 Space Sp. z 0. o.
ESA Contract No. 4000143237/23/NL/AS

CANopen Library Toolset Doc. CAN-N7S-CANDP-SUM

CANopen SW Library — Software User Manual Date: 2025-09-08
SFPRCE Issue: 2.3
N7 Space Sp. z 0.0. Page: 53 of 54

13 Lists

13.1 List of Tables

Table 1 — CANSW build €nVITONMENL.ocueiiiiriieierieriieieete ettt ee e eaeens 12
Table 2 — C Preprocessor configuration variables.c.cccveevieciierienienienieeieesieeseeseesnesveesseeseeses 18
Table 3 — Error codes used internally by CANSWoooiiiiiioiieiiiieceee et 19

13.2 List of Figures

Figure 1 — CANSW generic deployment dia@ram............ceevveerieerienienrieieesieesieeseesnesseesseesseessnessnenns 13
Figure 2 — CANSW components dia@ram.cceevververieerieesieeseesresseeseesseesseesssesssesssesssessseesseesseenns 14

13.3 List of Listings

Listing 1 — Unpacking CANSW source from ZIP file.cccooiiiiiiiiiiiiiieeee e 21
Listing 2 — Unpacking CANSW source from TAR BZIP2 file (recommended for Linux). 21
Listing 3 — Retrieving CANSW source from GitLab.com repository.ccecerereerenenieneeeeneneenen 21
Listing 4 — Build tool configuration for building library in debug mode (without optimalization). 21
Listing 5 — Build tool configuration for building library in release mode (with optimization). 22
Listing 6 — Build configuration Zelp command.............ccocoeiieiienieniieie ettt 22
Listing 7 — Command for building the library and executing unit-tests............ccceeoeereurriieeneeneenieennenns 22
Listing 8 — Command for generating documentation from the code...........ccceeveeniiniiiiiiniinienes 22
Listing 9 — Build tool configuration for building library with SUTC type support enabled. 22
Listing 10 — Cross-compilation build configuration example (ARM platforms).ccceevveviervennnens 23
Listing 11 — Cross-compilation build configuration example (GR712RC platform)...........cccceevveennns 24
Listing 12 — Custom installation directory configuration.............ccuecveeveevriereereeniesieereereesreeseeseneens 24
Listing 13 —alloc t allocator StIUCIUIE.ccuiiiiiiiiiiiiiiiciccc e 27
Listing 14 —alloc t and can net £ SEUP. ... 27
Listing 15 — Default (NULL) allOCALOT.c.eecuieiiieriieiieeieeieesteestiesite ettt sieesiteseeesneeeeeeseesseesnee e 27
Listing 16 — Pool allocator USage eXample.ccuveriiiieiiieeireeriieniesreereereesreesseesaessnessseesseesseessnessnenes 28
Listing 17 — can_msg structure representing CAN frame............ccccooeviviiiiiiiinniiiiiiicce 29
Listing 18 — CAN frame receiving using can net recv usage example. ..o 29
Listing 19 — CAN frame sending callback example.ccccoceririinininniininieiceeneeteeee e 29
Listing 20 — Example of can msg creation from lower layer data (SocketCAN).ccccccevieinine 30
Listing 21 — Example of can _msg transformation to lower layer data (SocketCAN). 31
Listing 22 — CAN network time setting using can net set time example........ccocevniinnnnne 31
Listing 23 — CAN network callback for re-scheduling time update.cccoeceviniiiininninineinenenee. 32
Listing 24 — CANopen device (co dev t) initialization example............cccooeviniiiiiiiiiiininncnnns 32
Listing 25 — CANopen Object Dictionary entry creation eXample.coccveevereriereneerieneeeenee e 33
Listing 26 — Standard dc£2dev installation using SETUPTOOLS. coivirrierieiiereeieeee e 33
Listing 27 — dcf2dev installation in virtual environment (USING VENV)...ccvevverrerieriieerieerieeseennens 34
Listing 29 — dcf2dev help command.cooeeiiiiiiiiinieeee e 34
LiSting 30 — AC T 2@V USAZE. ...eeueeeetieuieieetiete ettt ettt et e et et e teest e te e st ente st eneensesseenseeseentenseeneensesneenean 34
Listing 31 — dcf2dev usage €XaAMPIE.ccviivriiiiieiiiiie ettt et sereere vt eveesteesaaestaeesbeesveeseesreessnenes 34
Listing 32 — Minimal DCF file eXample.ccccoeoiiiiiiiiiiieieeeeteeeee et 34
Listing 33 — Example of header file generated by dcf2dev. ..c.cocieviiiiiiininiiieeeeceeeeeen 36

Copyright 2025 N7 Space Sp. z 0. o.
ESA Contract No. 4000143237/23/NL/AS

CANopen Library Toolset Doc. CAN-N7S-CANDP-SUM

CANopen SW Library — Software User Manual Date: 2025-09-08
SFPRCE Issue: 2.3
N7 Space Sp. z 0.0. Page: 54 of 54
Listing 34 — Excerpts from example C source file generated by dcf2dev....cocovvevenenienincnnencnen. 36
Listing 35 — Minimal NMT Master DCF eXample.ccoooieiiiiiiiiiiiieieeeeiceteee e 37
Listing 36 — Minimal NMT Slave DCF example.ccoccoiiiiiiiiiiiieiieeeeeeeetee e 39
Listing 37 — Necessary #include directives for minimal NMT implementation.ccccceccevuenuenee. 42
Listing 38 — Hardware abstraction layer implementation example.c.ccccvevverieriencieeneeneesnesnens 43
Listing 39 — Basic example of NMT service framework for Master/Slave application. 44
Listing 40 — Basic NMT service indication functions eXample.ccecvevierierienieniieesieeneeseesnens 44
Listing 41 — Sample output from the NMT master node application.ceceevereerenenieneneeneneenen. 45
Listing 42 — NMT Master DCF file modifications for example PDO service.cc.ccceceeevieeneeneennenns 45
Listing 43 — Master application modifications for example PDO Service..........ccoeceeviiriiernenieeneennenns 47
Listing 44 — Output from running example Master application with TPDO service.cccccceveenneene 47
Listing 45 — NMT Slave DCF file modifications for example PDO Service.......c...ceeeuereeevieeneeneennenns 48
Listing 46 — Slave application modifications for example PDO Service.cccceveeveenereeneneenenenen. 49
Listing 47 — Output from running example Slave application with RPDO service.ccccoecerveenennen. 49
Listing 48 — NMT Slave DCF file modifications for example Client SDO service.ccccoeeereeruenen. 50
Listing 49 — Example code performing SDO request using Client SDO in Slave application. 51
Listing 50 — Example code of SDO confirmation function for Client SDO in Slave application......... 51
Listing 51 — Example output from Slave application running Client SDO service............ccceeeeveennenne 51
Listing 52 — Example error report from Slave application running Client SDO service.c............ 51

Copyright 2025 N7 Space Sp. z 0. o.
ESA Contract No. 4000143237/23/NL/AS

	1 Introduction
	2 Applicable and reference documents
	2.1 Applicable documents
	2.2 Reference documents

	3 Terms, definitions and abbreviated terms
	4 Conventions
	5 Purpose of the Software
	6 External view of the software
	7 Operations environment
	7.1 General
	7.2 Hardware configuration
	7.3 Software configuration
	7.4 Operational constraints

	8 Operations basics
	9 Operations manual
	10 Reference manual
	10.1 Introduction
	10.2 Help method
	10.3 Screen definitions and operations
	10.4 Commands and operations
	10.5 Configuration options
	10.5.1 Service tailoring
	10.5.2 Built-in buffer sizes

	10.6 Error messages
	10.6.1 Error codes
	10.6.2 Abort codes
	10.6.3 Assertions and logging

	11 Tutorial
	11.1 Introduction
	11.2 Getting started
	11.2.1 Obtaining the source
	11.2.2 Building the Library
	11.2.2.1 SCET and SUTC time types support
	11.2.2.2 Cross-compilation configuration

	11.2.3 Installation
	11.2.4 Include paths and library dependencies
	11.2.5 Endianness considerations
	11.2.6 Using CANSW with Microchip MPLAB X IDE

	11.3 Using the software on a typical task
	11.3.1 Memory allocation
	11.3.1.1 Default allocator
	11.3.1.2 Custom pool allocator

	11.3.2 Receiving and sending CAN frames
	11.3.3 SocketCAN frame translation
	11.3.4 Setting the time / external clock
	11.3.5 Device and Object Dictionary
	11.3.6 dcf2dev
	11.3.7 NMT Master and Slave
	11.3.8 PDO
	11.3.9 Client SDO

	12 Analytical Index
	13 Lists
	13.1 List of Tables
	13.2 List of Figures
	13.3 List of Listings

		2025-09-08T17:28:22+0200
	Konrad Grochowski

		2025-09-09T14:45:51+0200
	Mateusz Dyrdół

		2025-09-09T16:20:28+0200
	Seweryn Ścibior

