

CANopen Library Toolset Doc. CAN-N7S-CANDP-SUM

CANopen SW Library – Software User Manual Date: 2025-09-08

 Issue: 2.3

N7 Space Sp. z o.o. Page: 1 of 54

Copyright 2025 N7 Space Sp. z o. o.

ESA Contract No. 4000143237/23/NL/AS

CANopen Library Toolset

CANopen SW Library –
Software User Manual

CAN-N7S-CANDP-SUM rev. 2.3

N7 SPACE SP. Z O.O.

Prepared by Date and Signature

Konrad Grochowski

Verified by

Mateusz Dyrdół

Approved by

Seweryn Ścibior

CANopen Library Toolset Doc. CAN-N7S-CANDP-SUM

CANopen SW Library – Software User Manual Date: 2025-09-08

 Issue: 2.3

N7 Space Sp. z o.o. Page: 2 of 54

Copyright 2025 N7 Space Sp. z o. o.

ESA Contract No. 4000143237/23/NL/AS

Table of Contents

1 Introduction ... 5

2 Applicable and reference documents ... 6

2.1 Applicable documents .. 6

2.2 Reference documents ... 6

3 Terms, definitions and abbreviated terms.. 7

4 Conventions ... 8

5 Purpose of the Software... 9

6 External view of the software .. 10

7 Operations environment .. 12

7.1 General ... 12

7.2 Hardware configuration ... 12

7.3 Software configuration ... 13

7.4 Operational constraints .. 14

8 Operations basics ... 15

9 Operations manual ... 16

10 Reference manual ... 17

10.1 Introduction .. 17

10.2 Help method ... 17

10.3 Screen definitions and operations .. 17

10.4 Commands and operations ... 17

10.5 Configuration options .. 17

10.5.1 Service tailoring .. 17

10.5.2 Built-in buffer sizes ... 18

10.6 Error messages ... 19

10.6.1 Error codes .. 19

10.6.2 Abort codes ... 19

10.6.3 Assertions and logging .. 20

11 Tutorial ... 21

11.1 Introduction .. 21

11.2 Getting started .. 21

11.2.1 Obtaining the source .. 21

11.2.2 Building the Library .. 21

11.2.3 Installation ... 24

11.2.4 Include paths and library dependencies ... 24

CANopen Library Toolset Doc. CAN-N7S-CANDP-SUM

CANopen SW Library – Software User Manual Date: 2025-09-08

 Issue: 2.3

N7 Space Sp. z o.o. Page: 3 of 54

Copyright 2025 N7 Space Sp. z o. o.

ESA Contract No. 4000143237/23/NL/AS

11.2.5 Endianness considerations ... 25

11.2.6 Using CANSW with Microchip MPLAB X IDE .. 25

11.3 Using the software on a typical task .. 27

11.3.1 Memory allocation .. 27

11.3.2 Receiving and sending CAN frames ... 28

11.3.3 SocketCAN frame translation ... 30

11.3.4 Setting the time / external clock .. 31

11.3.5 Device and Object Dictionary ... 32

11.3.6 dcf2dev .. 33

11.3.7 NMT Master and Slave ... 37

11.3.8 PDO ... 45

11.3.9 Client SDO .. 50

12 Analytical Index ... 52

13 Lists .. 53

13.1 List of Tables ... 53

13.2 List of Figures .. 53

13.3 List of Listings ... 53

CANopen Library Toolset Doc. CAN-N7S-CANDP-SUM

CANopen SW Library – Software User Manual Date: 2025-09-08

 Issue: 2.3

N7 Space Sp. z o.o. Page: 4 of 54

Copyright 2025 N7 Space Sp. z o. o.

ESA Contract No. 4000143237/23/NL/AS

Change Record

Issue Date Change

1.0 2021-06-28 Initial release

1.1 2021-10-15 Fixes for CDR RIDs:

• 7.2 – reworded sentences for better readability,

• 11.3.6 – extended venv usage instruction

• Captions added to all code listings

• Removed outdated reference to librt

• Explicit mention the Ubuntu 20.04 as the reference system

• Added chapter 11.2.1 – Obtaining the source

• Added 11.2.2.1 chapter about SCET and SUTC types

• Added 11.2.2.2 chapter about cross-compilation

1.2 2021-11-18 Updated referenced documents’ versions (for v3.1.3)

1.3 2021-11-26 Updated referenced documents’ versions (for v3.2.0)

2.0 2024-10-03 CANopen Library Toolset project PDR:

• Document identifier changed from CAN-N7S-UM-21001 to

CAN-N7S-CANDP-SUM

• New ESA contract identifier added to footer

• Introduction updated

• Reference documents updated

• 10.6.3 Assertions and logging chapter added

2.1 2024-11-27 Release for MTR:

• Reference documents updated

2.2 2025-05-29 Release for TRR:

• Reference documents updated

• Chapter 11.2.5 (endianness) added

• Chapter 11.2.6 (MPLAB) added

• Added compilation options for GR712RC

2.3 2025-09-08 Release for CDR/QR:

• Reference documents updated

• Examples updated to reference v3.5.0

CANopen Library Toolset Doc. CAN-N7S-CANDP-SUM

CANopen SW Library – Software User Manual Date: 2025-09-08

 Issue: 2.3

N7 Space Sp. z o.o. Page: 5 of 54

Copyright 2025 N7 Space Sp. z o. o.

ESA Contract No. 4000143237/23/NL/AS

1 Introduction

This document provides Software User Manual for the CANopen SW Library deliverable of the

CANopen Library Toolset project.

CANopen SW Library (CANSW) is an adaptation to space industry requirements of an existing and

field-tested open-source CANopen library (lely-core). CANSW is compliant with space-specific

CANopen extensions defined in ECSS-E-ST-50-15C and ECSS Criticality Category B software

requirements. It was developed in the scope of previous ESA activity and validated on representative

hardware platform (SAMV71). In the scope of this project its validation will be extended to include

other ARM (SAMRH71 and SAMRH707) and LEON3 (GR712RC) platforms.

Additionally in the scope of the activity CANopen Library Test Environment, Test Suite and

Development Support Software will be developed.

CANopen Library Test Environment (CTESW) defines the environment required to execute CANopen

Library Test Suite (CTSSW) which is used to validate CANSW. CTSSW was developed in the scope

of previous ESA activity and is available as open-source software. In the scope of this project CTESW

will be extended to support new platforms and CTSSW will be executed on those.

CANopen Library Development Support Software (CDSSW) is a set of new tools developed in the

scope of this project and aiming at supporting design of CANopen networks using CANSW. It will

provide user with capabilities to verify semantic correctness of the multiple nodes building the CANopen

network and offer support with editing, monitoring and instrumenting of the network.

The Software User Manual is produced as a standalone document and structured according to the SUM

Document Requirements Definition (DRD) given in Annex H of ECSS-E-ST-40C [AD1].

CANopen Library Toolset Doc. CAN-N7S-CANDP-SUM

CANopen SW Library – Software User Manual Date: 2025-09-08

 Issue: 2.3

N7 Space Sp. z o.o. Page: 6 of 54

Copyright 2025 N7 Space Sp. z o. o.

ESA Contract No. 4000143237/23/NL/AS

2 Applicable and reference documents

2.1 Applicable documents

ID Title Reference Rev.

AD1 ECSS – Space engineering

Software

ECSS-E-ST-40C 6 March 2009

AD2 ECSS – CANbus extension protocol ECSS-E-ST-50-15C 1 May 2015

2.2 Reference documents

ID Title Reference Rev.

RD1 CAN in Automation –

CANopen application layer and

communication profile

CiA 301 Version 4.2.0

RD2 CAN in Automation –

Electronic data sheet specification

for CANopen

CiA 306 Version 1.3.0

RD3 CANopen Library Toolset

CANopen SW Library –

Interface Control Document

CAN-N7S-CANDP-ICD 2.4

RD4 CANopen Library Toolset

CANopen SW Library –

Software Configuration File

CAN-N7S-CANDP-SCF 2.4

RD5 CANopen Library Toolset

CANopen SW Library –

Software Design Document

CAN-N7S-CANDP-SDD 2.4

RD6 CANopen Library Toolset

CANopen SW Library –

Software Requirements Specification

CAN-N7S-CANDP-SRS 2.3

RD7 CANopen Library Toolset

CANopen SW Library –

Failure Modes and Effects Analysis

CAN-N7S-CANDP-FMEA 2.3

RD8 CANopen Library Toolset

Test Suite –

Software User Manual

CAN-N7S-CTSDP-SUM 2.2

CANopen Library Toolset Doc. CAN-N7S-CANDP-SUM

CANopen SW Library – Software User Manual Date: 2025-09-08

 Issue: 2.3

N7 Space Sp. z o.o. Page: 7 of 54

Copyright 2025 N7 Space Sp. z o. o.

ESA Contract No. 4000143237/23/NL/AS

3 Terms, definitions and abbreviated terms

This document acronyms and abbreviations are listed here under.

CAN Controller Area Network

CANDP CANopen SW Library Data Package

CANSW CANopen SW Library

CDSDP CANopen Development Support Data Package

CDSSW CANopen Development Support Software

CTESW CANopen Test Environment Software

CTSDP CANopen Test Suite Data Package

CTSSW CANopen Test Suite Software

HWTB Hardware Test Bench

N7S N7 Space

CANopen Library Toolset Doc. CAN-N7S-CANDP-SUM

CANopen SW Library – Software User Manual Date: 2025-09-08

 Issue: 2.3

N7 Space Sp. z o.o. Page: 8 of 54

Copyright 2025 N7 Space Sp. z o. o.

ESA Contract No. 4000143237/23/NL/AS

4 Conventions

This Software User Manual describes a software project, therefore it refers to various commands that

can be executed in the terminal and it presents various source code fragments. In order to make those

special blocks more readable, numerous style conventions are used. This chapter quickly summarizes

said conventions.

Short commands and code fragments that are embedded inside normal text paragraphs use this

style with a monospace font.

Commands that are a bit longer or span multiple lines follow the following style:

$ command

Output (optional)

All commands listed in this manual were prepared and validated on Ubuntu 20.04 system. Any similar

Linux system should support all of the commands, it is recommended to use Ubuntu/Debian family.

Directory contents listings follow the same convention:

include/

└── subfolder/

 └── file

lib/

└── a generic comment about contents of lib/

share/

Source code blocks use the below style:

co_nmt_t* nmt_service = co_nmt_create(network, device);
assert(nmt_service != NULL); // must be non-null

The syntax highlighting colours used in the above block are defined as follows:

C Preprocessor directive

C Preprocessor include path

Type (built-in and user-created)

Function declaration and definition

Keywords

Variable definition

Struct member variable definition

NULL

String literal

Comments
Other

Blocks with DCF contents use the following scheme:

[Section]
Key=Value # comment

CANopen Library Toolset Doc. CAN-N7S-CANDP-SUM

CANopen SW Library – Software User Manual Date: 2025-09-08

 Issue: 2.3

N7 Space Sp. z o.o. Page: 9 of 54

Copyright 2025 N7 Space Sp. z o. o.

ESA Contract No. 4000143237/23/NL/AS

5 Purpose of the Software

The main purpose of the Software is to provide a software stack supporting a subset of the CANopen

protocol as defined in ECSS-E-ST-50-15C [AD2]. It provides an implementation of the Object

Dictionary and the Network Management (NMT), Service Data Object (SDO), Process Data Object

(PDO), Synchronization Object (SYNC) and Emergency Object (EMCY) protocols. It allows users to

create programs that need to use the CANopen protocol to communicate with software on other devices,

which are not necessarily using the same software stack. CANSW is a highly portable software library

that can be used also on resource constrained bare-metal microcontrollers. The Software and its public

Application Programming Interface are written in the C Programming Language (C99), which means it

can also be used directly by software written in C++ and when using any other programming language

that can interface with C, which is a very large set of languages. Even the C Standard Library is not

required to be available for users of the software. The implementation is passive, it relies on the user to

provide integration with the underlying CAN bus to send and receive CAN frames and to update the

clock used by CANSW. That means that the implementation is independent from any specific CAN

networking driver and system clocks.

CANSW includes also a Python tool – dcf2dev, that can optionally be used by the user to transform

device configuration files (DCF - [RD2]) into C data structures.

Detailed software overview can be found is SRS [RD6] and SDD [RD5].

CANopen Library Toolset Doc. CAN-N7S-CANDP-SUM

CANopen SW Library – Software User Manual Date: 2025-09-08

 Issue: 2.3

N7 Space Sp. z o.o. Page: 10 of 54

Copyright 2025 N7 Space Sp. z o. o.

ESA Contract No. 4000143237/23/NL/AS

6 External view of the software

CANSW is delivered as an archive consisting of source files and autotools-based build system. The

software itself consists of 4 libraries:

• liblely-compat – provides implementation of necessary parts of the C Standard Library

• liblely-util – provides implementation of data structures and various utilities

• liblely-can – provides implementation of base CAN network interfaces

• liblely-co – provides implementation of the CANopen protocol on top of the other libraries

The directory structure can be described as follows (for clarity reduced to most important items):

lely-core/

├── doc/

│ ├── Doxyfile.in – Doxygen configuration file

│ └── Makefile.am

├── docker/ – reference container configuration for developers (used by CI)

├── include/

│ ├── lely/

│ │ ├── can/

│ │ │ └── Contains header files of liblely-can

│ │ ├── co/

│ │ │ └── Contains header files of liblely-co

│ │ ├── compat/

│ │ │ └── Contains header files of liblely-compat

│ │ └── util/

│ │ └── Contains header files of liblely-util

│ └── Makefile.am

├── lib/

│ ├── can/

│ │ └── Contains Makefile.am and source code of liblely-can

│ ├── co/

│ │ └── Contains Makefile.am and source code of liblely-co

│ ├── compat/

│ │ └── Contains Makefile.am and source code of liblely-compat

│ ├── util/

│ │ └── Contains Makefile.am and source code of liblely-utils

│ └── Makefile.am

├── m4/

│ └── .m4 files used by the autotools build system

├── pkgconfig/

│ ├── .pc.in files with pkg-config metadata file templates

│ └── Makefile.am

├── python/

│ └── dcf-tools/

│ ├── dcf/

│ │ └── DCF file manipulation utility library for Python

│ ├── dcf2dev/

│ │ └── dcf2dev Python program sources

│ ├── Makefile.am

│ └── setup.py

CANopen Library Toolset Doc. CAN-N7S-CANDP-SUM

CANopen SW Library – Software User Manual Date: 2025-09-08

 Issue: 2.3

N7 Space Sp. z o.o. Page: 11 of 54

Copyright 2025 N7 Space Sp. z o. o.

ESA Contract No. 4000143237/23/NL/AS

├── unit-tests/

│ ├── can/

│ │ └── Contains Makefile.am and .cpp files with unit tests for liblely-can

│ ├── co/

│ │ └── Contains Makefile.am and .cpp files with unit tests for liblely-co

│ ├── compat/

│ │ └── Contains Makefile.am and .cpp files with unit tests for liblely-compat

│ ├── cpputest/

│ │ └── Contains Makefile.am and a .cpp file with sanity unit tests

│ ├── libtest/

│ │ └── Contains Makefiles and utility source code used by other unit tests

│ ├── util/

│ │ └── Contains Makefile.am and .cpp files with unit tests for liblely-util

│ └── Makefile.am

├── Makefile.am

└── configure.ac

The Software Configuration File [RD4] contains a detailed list of files in the library package along with

their SHA-256 checksums.

CANopen Library Toolset Doc. CAN-N7S-CANDP-SUM

CANopen SW Library – Software User Manual Date: 2025-09-08

 Issue: 2.3

N7 Space Sp. z o.o. Page: 12 of 54

Copyright 2025 N7 Space Sp. z o. o.

ESA Contract No. 4000143237/23/NL/AS

7 Operations environment

7.1 General

The software in this project is designed to be included and used by other software. Only a C compiler is

required to build the library, and a C++ compiler to build its unit tests. Apart from the library itself, there

are no other software component requirements imposed on the final user software. The hardware parts

used by the software are the Central Processing Unit (CPU), the Floating-Point Unit (FPU) and Random

Access Memory (RAM). No other hardware, especially CAN specific, is required.

For reference, the software has been built in a continuous manner using the following environment.

Table 1 – CANSW build environment.

Tool Version Purpose

Container environment

Docker 19.03.12 Container manager. Image containing all necessary build

environment is one of the deliverables of the CANSW (build

environment includes all other tools from this table).

Compilation environment

gcc x86/x64 4.9.0

5.5.0

6.5.0

7.5.0

8.4.0

9.3.0

10.3.0

13.2.0

Supported GNU C Compiler versions for x86 compilation.

Newest (10.x) version was used in the validation activities and

is included in distributed Docker image.

Other versions were verified by CANSW Continuous

Integration system and unit-tested, but not validated.

gcc ARM arm-gnu-

toolchain-13.3-

rel1-x86_64-

arm-none-eabi

GNU C Compiler for target ARM platforms

XC32 ARM

compiler

XC32 v4.45 8.3.1 Microchip XC32 compiler for SAM* microcontrollers.

bcc LEON3 sparc-gaisler-elf-

gcc (bcc-v2.3.1)

13.2.1 20240119

BCC C Compiler (GCC compatible) for LEON3 platforms

Autotools autoreconf 2.69 Build system

Unit-testing environment

CppUTest 4.0 Unit test library

7.2 Hardware configuration

The software has been tested on both x86 and ARM hardware architectures. The CANopen protocol

supports floating-point values, the FPU has to be enabled before using them. The software is designed

to be incorporated into other user-specified software. Therefore the detailed hardware configuration is

project dependent, while library itself is designed for portability. Because of that only a generic hardware

and component deployment diagram can be provided.

CANopen Library Toolset Doc. CAN-N7S-CANDP-SUM

CANopen SW Library – Software User Manual Date: 2025-09-08

 Issue: 2.3

N7 Space Sp. z o.o. Page: 13 of 54

Copyright 2025 N7 Space Sp. z o. o.

ESA Contract No. 4000143237/23/NL/AS

Figure 1 – CANSW generic deployment diagram.

7.3 Software configuration

The user should provide a Hardware Abstraction Layer (HAL) that will interface with the liblely-can

library to provide clock and base CAN networking capabilities to the Software. Depending on the project

this might involve integration with an underlying Operating System. The application code should

interface with the liblely-co library for project-specific CANopen-based application logic. The

CANopen device description also needs to be provided to the liblely-co library, either by compiling and

linking manually written code with said description, or by using code generated by the dcf2dev tool

from a Device Configuration File (DCF).

CANopen Library Toolset Doc. CAN-N7S-CANDP-SUM

CANopen SW Library – Software User Manual Date: 2025-09-08

 Issue: 2.3

N7 Space Sp. z o.o. Page: 14 of 54

Copyright 2025 N7 Space Sp. z o. o.

ESA Contract No. 4000143237/23/NL/AS

Figure 2 – CANSW components diagram.

7.4 Operational constraints

CANSW methods were not designed to be called directly from interrupt handlers and no special

precautions were implemented in them. It is assumed in the analysis that events like “message received”

are passed from interrupt handlers to HAL by the user and the Library code is executed in non-interrupt

context. Note: methods might be safe to be used from interrupt handlers, but it is up the user to perform

proper analysis.

CANSW is separated from HW and Operating System concerns and does not perform any internal

synchronization to avoid data races. User should ensure that no CANSW methods are called from

multiple threads/tasks on the same shared data or user should provide adequate synchronization

techniques.

CANopen Library Toolset Doc. CAN-N7S-CANDP-SUM

CANopen SW Library – Software User Manual Date: 2025-09-08

 Issue: 2.3

N7 Space Sp. z o.o. Page: 15 of 54

Copyright 2025 N7 Space Sp. z o. o.

ESA Contract No. 4000143237/23/NL/AS

8 Operations basics

N/A - The software in this project is designed to be included and used by other software. Therefore there

are no predefined operational tasks. Staffing concerns, standard daily operations and contingency

operations are all dependent on the final software based on CANSW.

CANopen Library Toolset Doc. CAN-N7S-CANDP-SUM

CANopen SW Library – Software User Manual Date: 2025-09-08

 Issue: 2.3

N7 Space Sp. z o.o. Page: 16 of 54

Copyright 2025 N7 Space Sp. z o. o.

ESA Contract No. 4000143237/23/NL/AS

9 Operations manual

Operations manual is not provided for CANDP. Details related to operations of CTSSW (validation test

suite) are provided in separate manual [RD8].

CANopen Library Toolset Doc. CAN-N7S-CANDP-SUM

CANopen SW Library – Software User Manual Date: 2025-09-08

 Issue: 2.3

N7 Space Sp. z o.o. Page: 17 of 54

Copyright 2025 N7 Space Sp. z o. o.

ESA Contract No. 4000143237/23/NL/AS

10 Reference manual

10.1 Introduction

A complete reference manual of the programming interfaces of each of the modules of CANSW is

available as the Doxygen-generated documentation supplied with the [RD3] Annex A. It is generated

from source code of the Library and inline comments written for every public API function. Doxygen-

style comments in all public header files used for generation of the reference manual can also be

inspected directly.

Commands listed in the following chapters assume Linux host – preferable Ubuntu 20.04 or similar. If

user follows the environment setup from CTSDP SUM [RD8], all commands should be executed inside

the Docker container (for example by preceding them with docker-here alias from [RD8]).

10.2 Help method

Each CANSW public function is documented with a basic description, the meaning of each input

parameter and return value and a reminder on how to access error information in case of failure. This

information is available in the Doxygen-generated documentation.

While building the Library, both the configure script and the generated make build system have

built-in help describing available options:

$./configure --help

$ make --help

The dcf2dev tool also has a built-in help command.

$ dcf2dev --help

10.3 Screen definitions and operations

N/A

10.4 Commands and operations

N/A

10.5 Configuration options

10.5.1 Service tailoring

CANSW supports conditional compilation of CANopen service/protocol. This allows the user to control

the object size by choosing to compile only the services that will be in fact used by the user code. This

has to be specified at configuration time just before building the Library. All configuration options can

be listed as already mentioned in [10.2] but the most important ones used in ECSS compliance mode

and related to service tailoring are:

• CSDO, to disable pass --disable-csdo

• EMCY, to disable pass --disable-emcy

CANopen Library Toolset Doc. CAN-N7S-CANDP-SUM

CANopen SW Library – Software User Manual Date: 2025-09-08

 Issue: 2.3

N7 Space Sp. z o.o. Page: 18 of 54

Copyright 2025 N7 Space Sp. z o. o.

ESA Contract No. 4000143237/23/NL/AS

• SYNC, to disable pass --disable-sync

• RPDO, to disable pass --disable-rpdo

• TPDO, to disable pass --disable-tpdo

• NMT Master, to disable pass --disable-master

For example $./configure --enable-ecss-compliance --disable-emcy --disable-

csdo --disable-master for a small build focused on PDO support.

The disabled services are reflected in the generated config.h configuration header that is used by the

Library during build and can be then used by the user application. It contains C Preprocessor definitions

for disabled services e.g.

#define LELY_NO_CO_CSDO=1

#define LELY_NO_EMCY=1

#define LELY_NO_CO_MASTER=1

for the example configuration above.

10.5.2 Built-in buffer sizes

CANSW, when configured in ECSS compliance mode, has disabled dynamic memory allocation

support. In order for certain CANopen services to function, the implementation uses memory buffers

with static predefined sizes. The user can overwrite the default sizes if the need arises. Below is the table

of C Preprocessor definitions that control various buffers and their default values. To make sure that the

Library and user code have consistent data structure definitions, overwritten values should be set when

building both CANSW and user code.

Table 2 – C Preprocessor configuration variables.

C Preprocessor definition name Default value Description
CO_EMCY_CAN_BUF_SIZE 16 The maximum number of EMCY messages to

send pending on inhibit timer
CO_EMCY_MAX_NMSG 8 The maximum number of EMCY errors in the

error stack
CO_ARRAY_CAPACITY 256 The maximum size (in bytes) of a CANopen

array value
CO_SDO_REQ_MEMBUF_SIZE 8 The size in bytes of an SDO upload/download

request memory buffer, default large enough

to accommodate basic data types
CO_SSDO_MEMBUF_SIZE 127 * 7 The maximum size (in bytes) of Server SDO

memory buffer for incoming data, default

large enough to accommodate maximum

block size used by SDO block transfer
CO_CSDO_MEMBUF_SIZE 8 The maximum size (in bytes) of Client SDO

memory buffer for incoming data, default

large enough to accommodate basic data types
CO_NMT_CAN_BUF_SIZE 16 The maximum number of CAN frames used

by NMT Master for buffered requests to NMT

slaves
CO_NMT_MAX_NHB 127 The maximum number of NMT Heartbeat

consumers, default equal to maximum number

of CANopen nodes

CANopen Library Toolset Doc. CAN-N7S-CANDP-SUM

CANopen SW Library – Software User Manual Date: 2025-09-08

 Issue: 2.3

N7 Space Sp. z o.o. Page: 19 of 54

Copyright 2025 N7 Space Sp. z o. o.

ESA Contract No. 4000143237/23/NL/AS

10.6 Error messages

Please refer to FMEA [RD7] Table 4 for details about error messages and failure modes that can occur

while accomplishing any of the user's functions, including the meaning of each message and

recommended action to be taken after.

10.6.1 Error codes

In case of calling a function documented as setting an error code or number, the currently set error code

can be obtained using the get_errnum() function available in <lely/util/error.h> header

file. The Library itself uses a handful of error codes described below. More error codes are available for

use in the user software, all of them are listed and documented in the Doxygen documentation for

<lely/util/error.h>.

Table 3 – Error codes used internally by CANSW

Error code constant Description
ERRNUM_INVAL Invalid argument provided
ERRNUM_NOMEM Not enough memory available
ERRNUM_PERM Operation not permitted
ERRNUM_NOSYS Function not supported
ERRNUM_AGAIN Try again

In order to reset the currently set error number, after fixing the issue, one should execute

set_errnum(ERRNUM_SUCCESS);.

A custom error code storing and reading functionality can be implemented by the user by calling

set_errc_set_handler and get_errc_set_handler. One use case for changing the default

behaviour is to use a custom storage or synchronization mechanism of the possibly shared error state.

Please refer to the Doxygen documentation for more details.

10.6.2 Abort codes

In CANopen SDO transfers, abort codes are used to communicate an error between Client SDO and

Server SDO services. CANSW provides C Preprocessor constant definitions of SDO abort codes as

defined in [RD1] Table 22 in the <lely/co/sdo.h> header file. All abort code definitions follow

the same naming scheme e.g. CO_SDO_AC_PARAM_RANGE. Please refer to [RD1] and the Doxygen

documentation of the mentioned header file.

Client SDO service API provides indication and confirmation callback functions that can be set to

monitor request progress and receive abort codes from Server SDO. For details refer to the Doxygen

documentation of co_csdo_set_dn_ind, co_csdo_set_up_ind, co_csdo_dn_con_t and

co_csdo_up_con_t.

Applications based on the Server SDO service can provide specific abort code handling logic by setting

user-provided upload and download indication functions using co_obj_set_dn_ind,

co_sub_set_dn_ind, co_obj_set_up_ind and co_sub_set_up_ind CANSW function.

Refer to Doxygen documentation for details.

CANopen Library Toolset Doc. CAN-N7S-CANDP-SUM

CANopen SW Library – Software User Manual Date: 2025-09-08

 Issue: 2.3

N7 Space Sp. z o.o. Page: 20 of 54

Copyright 2025 N7 Space Sp. z o. o.

ESA Contract No. 4000143237/23/NL/AS

10.6.3 Assertions and logging

By default the library is built with support for assertions in the code. This is a recommended option with

initial deployment of the library – assertions help to detect misuse of the C API. When necessary for

performance / code size, they can be disable using standard C compilation define NDEBUG.

On embedded environments (especially bare-metal) to access the information provided by the assertion

user will need to implement compiler specific assertion handling procedure. For GCC compiler it is

usually called __assert_func and receives all assertion data as arguments. Those can be logged or

discarded – it is up for the user to decide. Minimal approach would be to provide empty method as a

location for inserting break point for debugging.

Additionally CANSW supports human-readable logging. This requires support for dynamic allocation

and hence cannot be used in the “ECSS compliant” version. But if such needs arise, for debugging

purposes, the library can be built without –enable-ecss-compliance and with --enable-

diag option. Messages will be provided to standard output and it is up to the user to configure the

system in such way, that the output will be visible.

CANopen Library Toolset Doc. CAN-N7S-CANDP-SUM

CANopen SW Library – Software User Manual Date: 2025-09-08

 Issue: 2.3

N7 Space Sp. z o.o. Page: 21 of 54

Copyright 2025 N7 Space Sp. z o. o.

ESA Contract No. 4000143237/23/NL/AS

11 Tutorial

11.1 Introduction

This tutorial serves as an introduction to the CANopen SW Library. Its goal is to demonstrate how to

use the provided API to perform basic tasks related to the CANopen protocol. It covers building the

Library in the ECSS compliance mode, assuming a Linux-based environment with embedded system

characteristics i.e. with no dynamic memory allocation. For simplicity and readability, code fragments

in this tutorial make use of the C Standard Library, but the built and the Library do not, due to the ECSS

compliance mode. It also covers providing and using a custom memory allocator, example integration

with a base CAN networking stack and an external clock. It covers CANopen specific topics like the

Object Dictionary, NMT Master and Slave nodes, basic PDO and SDO transfer services.

This tutorial assumes a basic level of knowledge of the CANopen protocol and only provides an

introduction to the Library, written specifically for software engineers – potential users of the Library.

11.2 Getting started

11.2.1 Obtaining the source

CANSW source can be obtained by extracting delivered ZIP archive as in Listing 1.

Listing 1 – Unpacking CANSW source from ZIP file.

$ unzip CAN-CANDP-library-src-v3_5_0.zip # assuming version 3.5.0

Or (recommended option on Linux as CANSW uses symbolic-links) from TAR BZIP2 - Listing 2.

Listing 2 – Unpacking CANSW source from TAR BZIP2 file (recommended for Linux).

$ tar -xvf CAN-CANDP-library-v3_5_0.tar.bz2 # assuming version 3.5.0

Alternatively CANSW source can be accessed using publicly available code repository by executing the

commands from Listing 3 (assuming version 3.5.0 of the CTSSW).

Listing 3 – Retrieving CANSW source from GitLab.com repository.

$ git clone https://gitlab.com/n7space/canopen/lely-core.git --depth=1 --branch=v3.5.0

11.2.2 Building the Library

This section assumes that the Library's main directory is the current working directory. In order to build

a static version of the library in “debug” configuration, commands from Listing 4 should be executed.

Listing 4 – Build tool configuration for building library in debug mode (without optimalization).

$ autoreconf -i

$ CFLAGS="-O0 -g" CXXFLAGS="-O0 -g" ./configure --disable-shared --enable-ecss-compliance

$ make

To build an optimized "release" variant of the library the CFLAGS and CXXFLAGS environment

variables should not exist or should be set to -O2 -g, which will be assumed as a default in the former

case (see Listing 5).

CANopen Library Toolset Doc. CAN-N7S-CANDP-SUM

CANopen SW Library – Software User Manual Date: 2025-09-08

 Issue: 2.3

N7 Space Sp. z o.o. Page: 22 of 54

Copyright 2025 N7 Space Sp. z o. o.

ESA Contract No. 4000143237/23/NL/AS

Listing 5 – Build tool configuration for building library in release mode (with optimization).

$ unset CFLAGS

$ unset CXXFLAGS

$./configure --disable-shared --enable-ecss-compliance

$ make

In order to see more configuration options, execute the command from Listing 6.

Listing 6 – Build configuration help command.

$./configure --help

Unit tests require the CppUTest library. The configure script uses pkg-config to find it. In case

of a custom manual build of the dependency, user might need adjusting the PKG_CONFIG_PATH

environment variable. Both unit tests and the CppUTest library require a C++ compiler. The library

itself requires only a C compiler.

To build the library and execute the unit tests, use command from Listing 7.

Listing 7 – Command for building the library and executing unit-tests.

$ make check

Note: unit tests require a full ECSS-compliant build of the Library, service tailoring is not supported by

them. See [10.5.1].

To build the Doxygen documentation one has to have Doxygen and Graphviz installed on the

development system at configure time (during execution of ./configure command, like in Listing

4 or Listing 5). Then the command from Listing 8 will build the documentation in HTML format and

make it available at doc/html/index.html.

Listing 8 – Command for generating documentation from the code.

$ make html

The documentation should be built and available at doc/html/index.html.

11.2.2.1 SCET and SUTC time types support

The Library offers optional support for SCET and SUTC time types. To enable those non-standard

CANopen types, user needs to provide data type to be used to identify those values in the protocol. This

has to be done using C language defines passed via CPPFLAGS:

• CO_DEFTYPE_TIME_SCET

• CO_DEFTYPE_TIME_SUTC

Listing 9 presents an example which enables SUTC type and assigns 0x0061 type identifier to it during

Library build configuration. User has to be aware, that such setting of CPPFLAGS overwrites the default

one, so special care might be required to ensure proper set of all required flags.

Listing 9 – Build tool configuration for building library with SUTC type support enabled.

$ CPPFLAGS="-DCO_DEFTYPE_TIME_SUTC=0x0061" ./configure --enable-ecss-compliance

CANopen Library Toolset Doc. CAN-N7S-CANDP-SUM

CANopen SW Library – Software User Manual Date: 2025-09-08

 Issue: 2.3

N7 Space Sp. z o.o. Page: 23 of 54

Copyright 2025 N7 Space Sp. z o. o.

ESA Contract No. 4000143237/23/NL/AS

11.2.2.2 Cross-compilation configuration

Build tool support cross-compilation – building the Library for platform other than the host one.

Assuming GNU compatible build toolchain is available in the system (gcc, ar, libtool etc.) and is

prefixed with platform-name (e.g. platform-name-gcc), configuring build of the Library to use that tool

can be done by passing --host=platform-name parameter to configure script.

User should be aware, that choosing the tool might not be enough for properly configuring build for

selected platform. Subset of compilation and linking flags might require to be set up according to given

platform requirements. Those flags include:

• CFLAGS

• CPPFLAGS

• LDFLAGS

It is recommended for embedded platforms to disable building of executables (especially for bare metal

platforms), by passing --disable-tests --disable-unit-tests to the configuration.

User must take special care for merging various flags (compilation mode, cross-compilation specific

options, etc.) and other customization options (tailored services etc.) in the configure script call – all

options must be passed at once.

Listing 10 presents complete configuration of cross-build compilation for SAMV71, SAMRH71 and

SAMRH707 ARM platforms. Listing 11 presents the configuration for GR712RC LEON3 platform.

Those configurations were used during Library validation activities.

Listing 10 – Cross-compilation build configuration example (ARM platforms).

$./configure --host=arm-none-eabi \

"LDFLAGS= -mcpu=cortex-m7 \

 -mfloat-abi=hard \

 -mfpu=fpv5-d16 \

 -mlittle-endian \

 -mthumb -ffunction-sections \

 -Wl,--gc-sections \

 --specs=nosys.specs" \

"CFLAGS= -O2 \

 -ggdb3 \

 -DCO_DEFTYPE_TIME_SCET=0x0060 \

 -DCO_DEFTYPE_TIME_SUTC=0x0061 \

 -DLELY_HAVE_ITIMERSPEC=1 \

 -mcpu=cortex-m7 \

 -mfloat-abi=hard \

 -mfpu=fpv5-d16 \

 -mlittle-endian \

 -mthumb \

 -ffunction-sections" \

--enable-ecss-compliance \

--disable-shared \

--disable-python \

--disable-tests \

--disable-unit-tests \

--disable-threads

CANopen Library Toolset Doc. CAN-N7S-CANDP-SUM

CANopen SW Library – Software User Manual Date: 2025-09-08

 Issue: 2.3

N7 Space Sp. z o.o. Page: 24 of 54

Copyright 2025 N7 Space Sp. z o. o.

ESA Contract No. 4000143237/23/NL/AS

Listing 11 – Cross-compilation build configuration example (GR712RC platform).

$./configure --host=sparc-gaisler-elf \

"LDFLAGS= -qbsp=gr712rc \

 -mcpu=leon3 \

 -mfix-gr712rc \

 -Wl,--gc-sections" \

"CFLAGS= -O2 \

 -ggdb3 \

 -DCO_DEFTYPE_TIME_SCET=0x0060 \

 -DCO_DEFTYPE_TIME_SUTC=0x0061 \

 -DLELY_HAVE_ITIMERSPEC=1 \

 -DLELY_HAVE_TIMESPEC=1 \

 -DLELY_HAVE_SYS_TYPES_H=1 \

 -mcpu=leon3 \

 -qbsp=gr712rc \

 -mfix-gr712rc" \

--enable-ecss-compliance \

--disable-shared \

--disable-python \

--disable-tests \

--disable-unit-tests \

--disable-threads

11.2.3 Installation

Assuming that the Library is already built, it is enough to execute make install to install the library

at default system’s location. In order to control the target installation directory, one can set it up at the

configure level (Listing 12).

Listing 12 – Custom installation directory configuration.

$./configure --disable-shared --enable-ecss-compliance --prefix /custom/canopen/directory

11.2.4 Include paths and library dependencies

The installed Library has a very simple structure:

include/

lib/

share/

The lib/pkgconfig/ subdirectory contains pkg-config metadata files and in order to use

Library, the user application should use the liblely-co.pc file for configuration.

In case pkg-config is not used by the user and the library is not installed in the system’s default

location, include/ directory should be added to include paths e.g.

$ gcc <other options> -isystem /path/to/library/include

and lib/ directory added to lib path with -llely-compat, -llely-util, -llely-can and -

llely-co libraries (in that order) linked into the user application executable file.

CANopen Library Toolset Doc. CAN-N7S-CANDP-SUM

CANopen SW Library – Software User Manual Date: 2025-09-08

 Issue: 2.3

N7 Space Sp. z o.o. Page: 25 of 54

Copyright 2025 N7 Space Sp. z o. o.

ESA Contract No. 4000143237/23/NL/AS

11.2.5 Endianness considerations

CANopen library stores its Object Dictionary always as Little Endian, disregarding platform memory

layout. This makes the Object Dictionary contents consistent with CANopen messages endianness,

which is useful with services like PDO and SDO. This puts additional responsibilities on the user when

writing portable code: user should never modify Object Dictionary contents directly (via pointer etc.).

While accessing Object Dictionary user should always rely on library access functions (from

co_dev_get_val_X_ and co_dev_set_val_X_ families – for example co_dev_get_val_u32).

Do not use “typeless” co_dev_get_val or co_dev_set_val for value types other than DOMAIN.

11.2.6 Using CANSW with Microchip MPLAB X IDE

CANopen library can be integrated with Microchip’s MPLAB IDE using Python script provided as a

part of CTESW.

The script generates a library project containing CANopen library sources. That project can be easily

added to MPLAB project as an external library, to be used in CANopen applications. Details about the

script’s usage can be found in CTESW SUM [RD8].

Source code distribution also contains pre-prepared MPLAB IDE packages.

After obtaining the library in MPLAB format, the project can be opened in MPLAB X IDE:

After opening the project, it’s recommended to verify that all the files are present, and correct toolchain

is used for building the project, as it’s not explicitly specified by the script.

CANopen Library Toolset Doc. CAN-N7S-CANDP-SUM

CANopen SW Library – Software User Manual Date: 2025-09-08

 Issue: 2.3

N7 Space Sp. z o.o. Page: 26 of 54

Copyright 2025 N7 Space Sp. z o. o.

ESA Contract No. 4000143237/23/NL/AS

After selecting the compiler, the project can be built and included in other MPLAB X IDE projects.

It’s important to note that the include directory for LibCANopen must be manually specified in

application project, and should point to include/ subdirectory of generated MPLAB library project.

CANopen Library Toolset Doc. CAN-N7S-CANDP-SUM

CANopen SW Library – Software User Manual Date: 2025-09-08

 Issue: 2.3

N7 Space Sp. z o.o. Page: 27 of 54

Copyright 2025 N7 Space Sp. z o. o.

ESA Contract No. 4000143237/23/NL/AS

11.3 Using the software on a typical task

11.3.1 Memory allocation

Many operations performed by the Library require allocation of some amount of memory when needed.

The Library contains a unified interface for handling memory allocation and deallocation. That interface

provides an opt-in method for hooking up any custom memory allocation scheme that might serve

project or application specific requirements.

The API for memory allocation is provided by the lely/util/memory.h header file. The most

important functions declared there are mem_alloc and mem_free responsible for allocating and

freeing memory, respectively. Both serve as the public interface for the chosen underlying allocator, that

has to be passed as an argument.

The generic interface is realized by the alloc_vtbl structure that's mostly referenced through its

alloc_t type alias (see Listing 13).

Listing 13 – alloc_t allocator structure.

struct alloc_vtbl {

 void *(*alloc)(alloc_t *alloc, size_t alignment, size_t size);

 void (*free)(alloc_t *alloc, void *ptr);

 size_t (*size)(const alloc_t *alloc);

 size_t (*capacity)(const alloc_t *alloc);

};

It is the user's responsibility to provide all four functions that match the signatures of above mentioned

function pointers with the implementation of an application-specific allocator. In a later chapter we'll

cover an example implementation of such allocator.

Inside the Library, all references to the selected allocator are made through the can_net_t structure.

Therefore the user has to provide a pointer to the allocator when creating the CAN Network object as

shown in Listing 14.

Listing 14 – alloc_t and can_net_t setup.

alloc_t* allocator = create_allocator(); // user-provided

can_net_t* network = can_net_create(allocator);

It is also possible to use the allocator manually, outside the Library code.

11.3.1.1 Default allocator

If no allocator is provided then the default one will be used inside the Library.

Listing 15 – Default (NULL) allocator.

void* allocated_memory = mem_alloc(NULL);

...

mem_free(NULL, allocated_memory);

The ECSS-compliant compilation of the Library provides an empty implementation of the default

memory allocator. In other compilation modes it is based on dynamic heap memory and is thus of very

CANopen Library Toolset Doc. CAN-N7S-CANDP-SUM

CANopen SW Library – Software User Manual Date: 2025-09-08

 Issue: 2.3

N7 Space Sp. z o.o. Page: 28 of 54

Copyright 2025 N7 Space Sp. z o. o.

ESA Contract No. 4000143237/23/NL/AS

little use for resource-constrained projects. But it's worth noting that such behaviour of passing a null

pointer is well-defined (Listing 15).

The empty implementation available in ECSS-compliant compilation does not perform any allocation,

which makes most of the Library features unavailable. Hence the user is responsible for providing

allocator, either a custom one or properly configured pool allocator (11.3.1.2).

11.3.1.2 Custom pool allocator

A very likely popular use case is to use an arena-style allocator. The Library provides a utility structure

mempool that implements a very basic memory pool allocator. Listing 16 shows example use scheme.

Listing 16 – Pool allocator usage example.

#include <lely/co/type.h>

#include <lely/util/memory.h>

#include <lely/util/mempool.h>

// ...

alloc_t* create_allocator() {

 const size_t POOL_SIZE = 128u * 1024u;

 static co_unsigned8_t memory[POOL_SIZE] = {0};

 static mempool pool;

 return mempool_init(&pool, memory, POOL_SIZE);

}

Total allocated size and remaining pool capacity can be then queried using mem_size and

mem_capacity.

Above presented memory allocator is a very simple one. It uses 128kB of static memory in the

executable to provide storage for further on-demand allocation. It does not actually mark deallocated

memory as available and is thus unable to reuse it later. The Library itself doesn't create short-lived

objects in ECSS-compliant compilation, but a more complex memory allocation strategy might be

preferred by users, depending on their project needs.

11.3.2 Receiving and sending CAN frames

The Library provides an implementation of the CANopen protocol, which is a Layer 3 and above

network protocol, according to the OSI model. Below layers are not implemented, must be available

separately and their integration with the Library is expected to be provided by the user.

The Library uses a generic structure to represent CAN frames or messages. It consists of a 32-bit

unsigned integer to represent a CAN-ID (either 11 or 29 bit long), a byte for bit flags (e.g. to denote an

RTR frame), a byte to store the number of bytes in the data field and the data field itself (Listing 17).

CANopen Library Toolset Doc. CAN-N7S-CANDP-SUM

CANopen SW Library – Software User Manual Date: 2025-09-08

 Issue: 2.3

N7 Space Sp. z o.o. Page: 29 of 54

Copyright 2025 N7 Space Sp. z o. o.

ESA Contract No. 4000143237/23/NL/AS

Listing 17 – can_msg structure representing CAN frame.

struct can_msg {

 uint_least32_t id;

 uint_least8_t flags;

 uint_least8_t len;

 uint_least8_t data[CAN_MSG_MAX_LEN];

};

With CAN_MSG_MAX_LEN being equal to either 8 or 64 depending on whether CAN FD support is

enabled. In ECSS compliance mode it is disabled and CAN frames can store up to 8 bytes of data.

It is the user's responsibility to create proper instances of the above explained data structure and to pass

them to the Library. Conversely, it's also the responsibility of the user to translate any instance provided

by the Library to the proper target representation that could be encoded on the wire.

In order to inform the Library that a new CAN frame was received and should be handled, one should

use the can_net_recv function as shown in Listing 18.

Listing 18 – CAN frame receiving using can_net_recv usage example.

#include <lely/can/msg.h>

#include <lely/can/net.h>

// ...

alloc_t* allocator = create_allocator(); // user-provided

can_net_t* network = can_net_create(allocator);

// ...

struct can_msg msg = prepare_message(); // user-provided

const int return_code = can_net_recv(network, &msg, 0);

In order to obtain a CAN frame to be sent from the Library, one should provide a callback function that

will be called with the frame every time the Library requests a frame to be sent. That function must

conform to the int (const struct can_msg *msg, void *data) signature and can be installed

using can_net_set_send_func. Listing 19 presents an example of callback setup.

Listing 19 – CAN frame sending callback example.

// user-provided

int send_func(const can_msg* msg, int bus_id, void* data) {

 printf("SEND <%#x> <%#x>", msg->id, msg->flags);

 return 0;

}

void init_network() {

 alloc_t* allocator = create_allocator(); // user-provided

 can_net_t* network = can_net_create(allocator);

 can_net_set_send_func(network, &send_func, NULL);

// ...

Presented code only prints on the standard output some details of the frame that the Library requested

to be sent. A production-level implementation should interpret all fields of msg and attempt to send them

on the actual CAN bus.

CANopen Library Toolset Doc. CAN-N7S-CANDP-SUM

CANopen SW Library – Software User Manual Date: 2025-09-08

 Issue: 2.3

N7 Space Sp. z o.o. Page: 30 of 54

Copyright 2025 N7 Space Sp. z o. o.

ESA Contract No. 4000143237/23/NL/AS

11.3.3 SocketCAN frame translation

The former chapter explained the need for translating between a generic CAN frame format structure

provided by the Library and the target network stack. Choice of the latter is project-dependent. The

purpose of this chapter is to provide a concrete example using SocketCAN. SocketCAN is the default

driver for CAN networking stack in the Linux Kernel, therefore it should be quite popular. Additionally

the translation itself is pretty straightforward. This makes it a good candidate to use as an example.

Assuming that there is already an instance of struct can_frame read from a SocketCAN socket, one

can execute the code from Listing 20 to produce a struct can_msg that can be then provided to

can_net_recv later.

Listing 20 – Example of can_msg creation from lower layer data (SocketCAN).

int convert_canframe_to_canmsg(const struct can_frame* from,

 struct can_msg* to) {

 if (from->can_id & CAN_ERR_FLAG) {

 return -1;

 }

 *to = CAN_MSG_INIT;

 if (from->can_id & CAN_EFF_FLAG) {

 to->id = from->can_id & CAN_EFF_MASK;

 to->flags |= CAN_FLAG_IDE;

 } else {

 to->id = from->can_id & CAN_SFF_MASK;

 }

 if (from->can_id & CAN_RTR_FLAG) {

 to->flags |= CAN_FLAG_RTR;

 }

 to->len = MIN(from->can_dlc, CAN_MAX_LEN);

 if (!(to->flags & CAN_FLAG_RTR)) {

 memcpy(to->data, from->data, to->len);

 }

 return 0;

}

Translation in the other direction is equally straightforward. It's enough to reverse the performed

operations as shown in Listing 21.

CANopen Library Toolset Doc. CAN-N7S-CANDP-SUM

CANopen SW Library – Software User Manual Date: 2025-09-08

 Issue: 2.3

N7 Space Sp. z o.o. Page: 31 of 54

Copyright 2025 N7 Space Sp. z o. o.

ESA Contract No. 4000143237/23/NL/AS

Listing 21 – Example of can_msg transformation to lower layer data (SocketCAN).

void convert_canmsg_to_canframe(const struct can_msg* from,

 struct can_frame* to) {

 memset(to, 0, sizeof(*to));

 to->can_id = from->id;

 if (from->flags & CAN_FLAG_IDE) {

 to->can_id &= CAN_EFF_MASK;

 to->can_id |= CAN_EFF_FLAG;

 } else {

 to->can_id &= CAN_SFF_MASK;

 }

 to->can_dlc = MIN(from->len, CAN_MAX_LEN);

 if (from->flags & CAN_FLAG_RTR) {

 to->can_id |= CAN_RTR_FLAG;

 } else {

 memcpy(to->data, from->data, to->can_dlc);

 }

}

After calling the above function, one has an instance of struct can_frame that is ready to be

written to the SocketCAN socket.

11.3.4 Setting the time / external clock

The Library does not assume a specific clock on a target platform. It is entirely the responsibility of the

user to provide current time information to the Library. As with the chosen memory allocator, current

time is a property of the CAN network interface. One can set it using can_net_set_time. The function

accepts a value of standard timespec type, and if unavailable the <lely/compat/time.h> header

file provides a compatible definition. It's a simple structure of two values tv_sec and tv_nsec to

represent a time point using number of seconds and nanoseconds in between them. The time provided

should come from a monotonic clock i.e. the provided value should never be smaller than the one

provided before.

Listing 22 – CAN network time setting using can_net_set_time example.

#include <time.h>

// ...

void update_time() {

 struct timespec ts = {0};

 clock_gettime(CLOCK_MONOTONIC, &ts);

 const int rc = can_net_set_time(&ts);

 // user-provided code to handle a non-zero value of rc

}

Calling can_net_set_time function (example shown in Listing 22) may invoke multiple registered

timer callback functions. For example it might trigger sending a CANopen SYNC message if there is a

CANopen Library Toolset Doc. CAN-N7S-CANDP-SUM

CANopen SW Library – Software User Manual Date: 2025-09-08

 Issue: 2.3

N7 Space Sp. z o.o. Page: 32 of 54

Copyright 2025 N7 Space Sp. z o. o.

ESA Contract No. 4000143237/23/NL/AS

SYNC producer service running. One of those callback functions may fail, that's the reason the

can_net_set_time function provides a return code.

The time point at which the next timer callback function will be triggered can be queried. The CAN

network interface provides another callback that can be set using the can_net_set_next_func

function, shown in example on Listing 23. This way user code can schedule time updates for proper

moments, to achieve the best timer events precision.

Listing 23 – CAN network callback for re-scheduling time update.

int next_func(const timespec* ts, void* data) {

 printf("Next trigger at: %ld.%ld\n", ts->tv_sec, ts->tv_nsec);

 return 0;

}

// ...

can_net_set_next_func(network, &next_func, NULL);

// ...

update_time(); // user-provided, calls can_net_set_time

11.3.5 Device and Object Dictionary

Two most central concepts in the CANopen protocol are the CANopen Device and the Object Dictionary

that's part of the former. Typically in a single application there will be one instance of the device

structure that contains its own dictionary. The dictionary is a set of objects that can be accessed using a

16-bit index. Each object can represent a singular value, an array or a record of up to 255 smaller sub-

object values. Part of the dictionary is used to configure the CANopen device communication parameters

(index range between 0x1000 and 0x1fff) and part of it is available for storing application specific data.

Usually the dictionary is initialized based on the contents of EDS (Electronic Data Sheet) or DCF

(Device Configuration File) files. This tutorial shows how to create such entries manually using the

provided API.

The device, object and sub-object instances can be allocated using a custom memory allocator, like the

one presented in a former chapter. But for the sake of simplicity, static memory will be used to provide

storage for those instances.

First one needs to create and initialize a device. Code in Listing 24 does that using a Node-ID of 0x01.

Listing 24 – CANopen device (co_dev_t) initialization example.

#include <lely/co/detail/dev.h>

static co_dev_t device;

int main() {

 co_dev_init(&device, 0x01u);

}

With the device ready, it's time to create an entry in its object dictionary – see Listing 25.

CANopen Library Toolset Doc. CAN-N7S-CANDP-SUM

CANopen SW Library – Software User Manual Date: 2025-09-08

 Issue: 2.3

N7 Space Sp. z o.o. Page: 33 of 54

Copyright 2025 N7 Space Sp. z o. o.

ESA Contract No. 4000143237/23/NL/AS

Listing 25 – CANopen Object Dictionary entry creation example.

#include <lely/co/detail/obj.h>

// ...

static struct {

 co_unsigned32_t sub0;

} value1005 = {

 .sub0 = 0x40000080;

};

static co_obj_t object1005;

static co_sub_t object1005sub0;

int main() {

 // ...

 co_obj_init(&object1005, 0x1005u, &value1005, sizeof(value1005));

 co_sub_init(&object1005sub0, 0x00u, CO_DEFTYPE_UNSIGNED32,

 &value1005.sub0);

 co_dev_insert_obj(&device, &object1005);

 co_obj_insert_sub(&object1005, &object1005sub0);

}

The snippet from Listing 25 creates an object dictionary part that represents the COB-ID SYNC

message object with the default CAN-ID value (0x80) and the gen. bit set. The value1005 structure

serves as the storage for object and sub-object values, the object1005 and object1005sub0 provide

storage for object metadata like index or data type.

11.3.6 dcf2dev

Manually specifying entire contents of the Object Dictionary is a laborious and error-prone process. To

alleviate that, CANSW includes a Python-based tool dcf2dev, that can optionally be used to transform

human-readable Device Configuration Files (DCF) into C code that initializes a device with its object

dictionary fully populated. It's located in the python/dcf_tools directory. In order to make use of it,

it has to be installed.

A standard setuptools installation process is supported as shown in Listing 26.

Listing 26 – Standard dcf2dev installation using setuptools.

$ cd python/dcf-tools

$ python setup.py install

It is highly recommended to perform above in a virtual environment, so the tool will not collide with

other Python modules preinstalled in the user’s system. For example one can use module venv available

in Python 3.3 and newer, as shown in Listing 27.

CANopen Library Toolset Doc. CAN-N7S-CANDP-SUM

CANopen SW Library – Software User Manual Date: 2025-09-08

 Issue: 2.3

N7 Space Sp. z o.o. Page: 34 of 54

Copyright 2025 N7 Space Sp. z o. o.

ESA Contract No. 4000143237/23/NL/AS

Listing 27 – dcf2dev installation in virtual environment (using venv).

$ cd ~/<user-folder-to-store-venv-files>

$ python3 -m venv my_venv

$ source my_venv/bin/activate

$ cd <path-to-CANSW>/python/dcf_tools

$ python3 setup.py install

Successful installation of dcf2dev can be verified by invoking the tool (see Listing 28), which should

return its usage instructions.

Listing 28 – dcf2dev help command.

$ dcf2dev --help

After installation the tool can be used to transform a DCF file into a pair of source and header files. It

accepts a name of the input file and a module name to use in generated code – see Listing 29.

Listing 29 – dcf2dev usage.

$ dcf2dev [--header] [--include-config] file_name.dcf module_name

Results are printed on standard output, one may redirect them straight to a regular file as in Listing 30.

Listing 30 – dcf2dev usage example.

$ dcf2dev --header tutorial.dcf tutorial > tutorial.h

$ dcf2dev --include-config tutorial.dcf tutorial > tutorial.c

If user's application uses a build system to pass configuration macros using compiler flags instead of the

config.h header file, then the option --include-config should not be used.

For example, after using the tool, following the exact commands mentioned in Listing 30, on a minimal

DCF from Listing 31, it will generate a C header file and a matching C code source file, shown in Listing

32 and Listing 33 respectively.

Listing 31 – Minimal DCF file example.

[DeviceInfo]

VendorName=

VendorNumber=0

ProductName=

ProductNumber=0

RevisionNumber=0

OrderCode=

BaudRate_10=0

BaudRate_20=0

BaudRate_50=0

BaudRate_125=0

BaudRate_250=0

BaudRate_500=0

BaudRate_800=0

BaudRate_1000=0

[MandatoryObjects]

SupportedObjects=3

1=0x1000

CANopen Library Toolset Doc. CAN-N7S-CANDP-SUM

CANopen SW Library – Software User Manual Date: 2025-09-08

 Issue: 2.3

N7 Space Sp. z o.o. Page: 35 of 54

Copyright 2025 N7 Space Sp. z o. o.

ESA Contract No. 4000143237/23/NL/AS

2=0x1001

3=0x1018

[OptionalObjects]

SupportedObjects=0

[ManufacturerObjects]

SupportedObjects=0

[1000]

ParameterName=Device type

DataType=0x0007

AccessType=ro

[1001]

ParameterName=Error register

DataType=0x0005

AccessType=ro

[1018]

SubNumber=5

ParameterName=Identity object

ObjectType=0x09

[1018sub0]

ParameterName=Highest sub-index supported

DataType=0x0005

AccessType=const

DefaultValue=0x4

[1018sub1]

ParameterName=Vendor-ID

DataType=0x0007

AccessType=ro

[1018sub2]

ParameterName=Product code

DataType=0x0007

AccessType=ro

[1018sub3]

ParameterName=Revision number

DataType=0x0007

AccessType=ro

[1018sub4]

ParameterName=Serial number

DataType=0x0007

AccessType=ro

CANopen Library Toolset Doc. CAN-N7S-CANDP-SUM

CANopen SW Library – Software User Manual Date: 2025-09-08

 Issue: 2.3

N7 Space Sp. z o.o. Page: 36 of 54

Copyright 2025 N7 Space Sp. z o. o.

ESA Contract No. 4000143237/23/NL/AS

Listing 32 – Example of header file generated by dcf2dev.

#ifndef TUTORIAL_H_GENERATED_

#define TUTORIAL_H_GENERATED_

#if !LELY_NO_MALLOC

#error Static object dictionaries are only supported when dynamic memory

allocation is disabled.

#endif

#include <lely/co/co.h>

#ifdef __cplusplus

extern "C" {

#endif

 co_dev_t * tutorial_init(void);

#ifdef __cplusplus

}

#endif

#endif // TUTORIAL_H_GENERATED_

Listing 33 – Excerpts from example C source file generated by dcf2dev.

#ifdef HAVE_CONFIG_H

#include <config.h>

#endif

#if !LELY_NO_MALLOC

#error Static object dictionaries are only supported when dynamic memory

allocation is disabled.

#endif

#include <lely/co/detail/dev.h>

#include <lely/co/detail/obj.h>

#include <lely/util/cmp.h>

// ...

// static definitions of all required data structures and their instances

// ...

co_dev_t *

tutorial_init(void) {

 static co_dev_t *dev = NULL;

 if (!dev) {

 dev = &tutorial;

 co_dev_insert_obj(&tutorial, &tutorial_1000);

 co_obj_insert_sub(&tutorial_1000, &tutorial_1000sub0);

 co_dev_insert_obj(&tutorial, &tutorial_1001);

CANopen Library Toolset Doc. CAN-N7S-CANDP-SUM

CANopen SW Library – Software User Manual Date: 2025-09-08

 Issue: 2.3

N7 Space Sp. z o.o. Page: 37 of 54

Copyright 2025 N7 Space Sp. z o. o.

ESA Contract No. 4000143237/23/NL/AS

 co_obj_insert_sub(&tutorial_1001, &tutorial_1001sub0);

 co_dev_insert_obj(&tutorial, &tutorial_1018);

 co_obj_insert_sub(&tutorial_1018, &tutorial_1018sub0);

 co_obj_insert_sub(&tutorial_1018, &tutorial_1018sub1);

 co_obj_insert_sub(&tutorial_1018, &tutorial_1018sub2);

 co_obj_insert_sub(&tutorial_1018, &tutorial_1018sub3);

 co_obj_insert_sub(&tutorial_1018, &tutorial_1018sub4);

 }

 return dev;

}

User code should #include the generated tutorial.h file and call function tutorial_init() to

obtain a ready to use device instance. The tutorial.c file should be separately compiled and its

generated object code linked into the application.

Even though the generated source code is in the C Programming Language and must be compiled as

such, the generated header file is prepared to also be consumed by application code written in C++.

11.3.7 NMT Master and Slave

Based on the foundations already established by preceding tutorial chapters, it's time to create a working

example with two nodes based on CANSW exchanging data with each other. It will involve an

application serving as an NMT Master node and the other one filling the role of NMT Slave. The former

will produce and send SYNC messages and receive NMT Heartbeat messages. The latter will have a

reverse responsibility, it will consume SYNC messages and produce heartbeats. This chapter serves as

a basis for subsequent chapters, which cover incremental additions to more CANopen-based tasks.

First we will start with minimalistic DCF files for both Master (Listing 34) and Slave (Listing 35)

applications.

Listing 34 – Minimal NMT Master DCF example.

[DeviceInfo]

VendorName=European Space Agency

VendorNumber=0x0000033E

BaudRate_10=1

BaudRate_20=1

BaudRate_50=1

BaudRate_125=1

BaudRate_250=1

BaudRate_500=1

BaudRate_800=1

BaudRate_1000=1

[DeviceComissioning]

NodeID=0x01

[MandatoryObjects]

SupportedObjects=3

1=0x1000

2=0x1001

3=0x1018

CANopen Library Toolset Doc. CAN-N7S-CANDP-SUM

CANopen SW Library – Software User Manual Date: 2025-09-08

 Issue: 2.3

N7 Space Sp. z o.o. Page: 38 of 54

Copyright 2025 N7 Space Sp. z o. o.

ESA Contract No. 4000143237/23/NL/AS

[OptionalObjects]

SupportedObjects=5

1=0x1005

2=0x1006

3=0x1016

4=0x1F80

5=0x1F81

[ManufacturerObjects]

SupportedObjects=0

[1000]

ParameterName=Device type

DataType=0x0007

AccessType=ro

[1001]

ParameterName=Error register

DataType=0x0005

AccessType=ro

[1005]

ParameterName=COB-ID SYNC message

DataType=0x0007

AccessType=rw

DefaultValue=0x40000080

[1006]

ParameterName=Communication cycle period

DataType=0x0007

AccessType=rw

DefaultValue=500000

[1016]

SubNumber=2

ParameterName=Consumer heartbeat time

ObjectType=0x09

[1016sub0]

ParameterName=Highest sub-index supported

DataType=0x0005

AccessType=const

DefaultValue=0x01

[1016sub1]

ParameterName=Consumer heartbeat time

DataType=0x0007

AccessType=rw

DefaultValue=0x00020226

[1018]

SubNumber=5

CANopen Library Toolset Doc. CAN-N7S-CANDP-SUM

CANopen SW Library – Software User Manual Date: 2025-09-08

 Issue: 2.3

N7 Space Sp. z o.o. Page: 39 of 54

Copyright 2025 N7 Space Sp. z o. o.

ESA Contract No. 4000143237/23/NL/AS

ParameterName=Identity object

ObjectType=0x09

[1018sub0]

ParameterName=Highest sub-index supported

DataType=0x0005

AccessType=const

DefaultValue=0x04

[1018sub1]

ParameterName=Vendor-ID

DataType=0x0007

AccessType=ro

DefaultValue=0x0000033E

[1018sub2]

ParameterName=Product code

DataType=0x0007

AccessType=ro

[1018sub3]

ParameterName=Revision number

DataType=0x0007

AccessType=ro

[1018sub4]

ParameterName=Serial number

DataType=0x0007

AccessType=ro

[1F80]

ParameterName=NMT startup

DataType=0x0007

AccessType=rw

ParameterValue=0x00000001

[1F81]

ParameterName=NMT slave assignment

ObjectType=0x08

DataType=0x0007

AccessType=rw

CompactSubObj=2

[1F81Value]

NrOfEntries=1

2=0x00000001

Listing 35 – Minimal NMT Slave DCF example.

[DeviceInfo]

VendorName=European Space Agency

VendorNumber=0x0000033E

BaudRate_10=1

CANopen Library Toolset Doc. CAN-N7S-CANDP-SUM

CANopen SW Library – Software User Manual Date: 2025-09-08

 Issue: 2.3

N7 Space Sp. z o.o. Page: 40 of 54

Copyright 2025 N7 Space Sp. z o. o.

ESA Contract No. 4000143237/23/NL/AS

BaudRate_20=1

BaudRate_50=1

BaudRate_125=1

BaudRate_250=1

BaudRate_500=1

BaudRate_800=1

BaudRate_1000=1

[DeviceComissioning]

NodeID=0x02

[MandatoryObjects]

SupportedObjects=3

1=0x1000

2=0x1001

3=0x1018

[OptionalObjects]

SupportedObjects=3

1=0x1005

2=0x1017

3=0x1F80

[ManufacturerObjects]

SupportedObjects=0

[1000]

ParameterName=Device type

DataType=0x0007

AccessType=ro

[1001]

ParameterName=Error register

DataType=0x0005

AccessType=ro

[1005]

ParameterName=COB-ID SYNC message

DataType=0x0007

AccessType=rw

DefaultValue=0x00000080

[1017]

ParameterName=Producer heartbeat time

DataType=0x0006

AccessType=rw

DefaultValue=500

[1018]

SubNumber=5

ParameterName=Identity object

ObjectType=0x09

CANopen Library Toolset Doc. CAN-N7S-CANDP-SUM

CANopen SW Library – Software User Manual Date: 2025-09-08

 Issue: 2.3

N7 Space Sp. z o.o. Page: 41 of 54

Copyright 2025 N7 Space Sp. z o. o.

ESA Contract No. 4000143237/23/NL/AS

[1018sub0]

ParameterName=Highest sub-index supported

DataType=0x0005

AccessType=const

DefaultValue=0x04

[1018sub1]

ParameterName=Vendor-ID

DataType=0x0007

AccessType=ro

DefaultValue=0x0000033E

[1018sub2]

ParameterName=Product code

DataType=0x0007

AccessType=ro

[1018sub3]

ParameterName=Revision number

DataType=0x0007

AccessType=ro

[1018sub4]

ParameterName=Serial number

DataType=0x0007

AccessType=ro

[1F80]

ParameterName=NMT startup

DataType=0x0007

AccessType=rw

DefaultValue=0x00000000

Above files should be used as input to dcf2dev to generate appropriate C code that can be compiled

and linked into the Master and Slave applications, respectively. With that done, one can start

implementing the basic application code structure, starting with necessary #include directives listed

in Listing 36.

CANopen Library Toolset Doc. CAN-N7S-CANDP-SUM

CANopen SW Library – Software User Manual Date: 2025-09-08

 Issue: 2.3

N7 Space Sp. z o.o. Page: 42 of 54

Copyright 2025 N7 Space Sp. z o. o.

ESA Contract No. 4000143237/23/NL/AS

Listing 36 – Necessary #include directives for minimal NMT implementation.

#include "config.h" // generated while configuring the Library

#include <signal.h>

#include <stdio.h>

#include <time.h>

#include <lely/can/msg.h>

#include <lely/can/net.h>

#include <lely/co/dev.h>

#include <lely/co/obj.h>

#include <lely/co/nmt.h>

#include <lely/util/error.h>

#include <lely/util/memory.h>

#include <lely/util/mempool.h>

Listing 37 shows 3 functions the implement the requirements of a hardware abstraction layer that needs

to be provided by the user. One function is extracted with common code for observability purposes.

Everything was explained in previous chapters, but the receive_message needs an additional

comment. It is assumed in this tutorial that the user provided receive_convert function returns CAN

frame from internal hardware buffer or NULL if no CAN frame was received by the underlying hardware.

CANopen Library Toolset Doc. CAN-N7S-CANDP-SUM

CANopen SW Library – Software User Manual Date: 2025-09-08

 Issue: 2.3

N7 Space Sp. z o.o. Page: 43 of 54

Copyright 2025 N7 Space Sp. z o. o.

ESA Contract No. 4000143237/23/NL/AS

Listing 37 – Hardware abstraction layer implementation example.

void print_msg(const char* func, const struct can_msg* msg) {

 printf("%s <%#x> <%#x>", func, msg->id, msg->flags);

 if (msg->len != 0) printf(" DATA:");

 for (size_t i = 0; i < msg->len; ++i) printf(" 0x%02x", msg->data[i]);

 printf("\n");

}

int send_func(const struct can_msg* msg, int bus_id, void* data) {

 print_msg("SEND", msg);

 return convert_and_send(msg); // user-provided

}

void receive_message(can_net_t* network) {

 struct can_msg* msg = receive_convert(); // user-provided

 if (msg == NULL)

 return;

 print_msg("RECV", msg);

 can_net_recv(network, msg);

}

void set_current_time(can_net_t* network) {

 struct timespec ts;

 get_current_time(&ts); // user-provided

 can_net_set_time(network, &ts);

}

With a very barebone HAL described above, an example framework for both applications can be

introduced – see Listing 38. The only difference between Master and Slave applications is in the use of

dcf2dev generated code. After a small setup, the applications are run until the SIGINT signal is

received. The main loop checks for new data on CAN bus, reads new frame if available, and updates

the clock. This basic loop is a good fit for tutorial purposes but production grade programs will likely

use a more complex event-loop based solution.

The final code block in the listing is responsible for creating and starting an NMT service instance.

Additionally two indication functions are set for observability purposes – see Listing 39.

After building both applications and running them for a while, it should be possible to observe

continuous data exchange between them. Example output can be found in Listing 40. It can be seen in

it that an NMT boot-up was sent and later an NMT "reset communication" command was sent. Heartbeat

and state indication functions are called. SYNC message (CAN-ID 0x80) is being sent and Heartbeat

message originated at the slave node is received.

CANopen Library Toolset Doc. CAN-N7S-CANDP-SUM

CANopen SW Library – Software User Manual Date: 2025-09-08

 Issue: 2.3

N7 Space Sp. z o.o. Page: 44 of 54

Copyright 2025 N7 Space Sp. z o. o.

ESA Contract No. 4000143237/23/NL/AS

Listing 38 – Basic example of NMT service framework for Master/Slave application.

// necessary #include directives, see Listing 36

#include "dcf_nmt.h" // from dcf2dev

static volatile sig_atomic_t last_signal;

void signal_handler(int sig) { last_signal = sig; }

// system integration functions, see Listing 37

// NMT Service indication functions, see Listing 39

co_nmt_t* setup_nmt(co_dev_t* device, can_net_t* network) {

 co_nmt_t* nmt = co_nmt_create(network, device);

 assert(nmt != NULL);

 co_nmt_set_hb_ind(nmt, &hb_ind, NULL);

 co_nmt_set_st_ind(nmt, &st_ind, NULL);

 co_nmt_cs_ind(nmt, CO_NMT_CS_RESET_NODE);

}

int main() {

 signal(SIGINT, &signal_handler);

 co_dev_t* device = dcf_nmt_init(); // from dcf2dev

 alloc_t* alloc = create_allocator();

 can_net_t* network = can_net_create(alloc);

 can_net_set_send_func(network, &send_func, NULL);

 co_nmt_t* nmt = setup_nmt(device, network);

 set_current_time(network);

 while (last_signal == 0) {

 receive_message(network);

 set_current_time(network);

 }

 co_nmt_destroy(nmt);

 can_net_destroy(network);

 return 0;

}

Listing 39 – Basic NMT service indication functions example.

void hb_ind(co_nmt_t* nmt, co_unsigned8_t id, int state, int reason,

 void* data) {

 printf("HB: id=<%d> state=<%d> reason=<%d>\n", id, state, reason);

}

void st_ind(co_nmt_t* nmt, co_unsigned8_t id, co_unsigned8_t st,

 void* data) {

 printf("ST: id=<%d> st=<%d>\n", id, st);

}

CANopen Library Toolset Doc. CAN-N7S-CANDP-SUM

CANopen SW Library – Software User Manual Date: 2025-09-08

 Issue: 2.3

N7 Space Sp. z o.o. Page: 45 of 54

Copyright 2025 N7 Space Sp. z o. o.

ESA Contract No. 4000143237/23/NL/AS

Listing 40 – Sample output from the NMT master node application.

ST: id=<1> st=<0>

ST: id=<1> st=<0>

SEND <0x701> <0> DATA: 0x00

ST: id=<1> st=<127>

SEND <0> <0> DATA: 0x82 0x00

RECV <0x702> <0> DATA: 0x7f

HB: id=<2> state=<0> reason=<1>

ST: id=<2> st=<127>

RECV <0x702> <0> DATA: 0x00

HB: id=<2> state=<0> reason=<1>

ST: id=<2> st=<0>

ST: id=<2> st=<0>

SEND <0x80> <0>

SEND <0x80> <0>

RECV <0x702> <0> DATA: 0x7f

11.3.8 PDO

This chapter shows how to configure a simple PDO-based data transmission between two CANopen

nodes. Based on the foundation built in former chapter, a manufacturer-specific object is added to both

master and slave node applications. Master uses 0x3000 as its index and has it mapped to a synchronous

cyclic TPDO. Slave on the other hand uses 0x4000 for its object, and has it mapped to a synchronous

RPDO that matches the master's TPDO. The master application built in former chapter produces a SYNC

message and newly introduced PDO-based data transmission is synchronized to both sending and

reception of that message. Listing 41 presents necessary modifications of the Master’s DCF file from

previous chapter to add simple PDO service.

Listing 41 – NMT Master DCF file modifications for example PDO service.

...

[OptionalObjects]

SupportedObjects=7

1=0x1005

2=0x1006

3=0x1016

4=0x1F80

5=0x1F81

6=0x1800

7=0x1A00

[ManufacturerObjects]

SupportedObjects=1

1=0x3000

...

[3000]

ParameterName=TutorialMasterTime

DataType=0x0007 # 32-bit unsigned integer

AccessType=rw

DefaultValue=0

PDOMapping=1

CANopen Library Toolset Doc. CAN-N7S-CANDP-SUM

CANopen SW Library – Software User Manual Date: 2025-09-08

 Issue: 2.3

N7 Space Sp. z o.o. Page: 46 of 54

Copyright 2025 N7 Space Sp. z o. o.

ESA Contract No. 4000143237/23/NL/AS

[1800]

SubNumber=3

ParameterName=TPDO communication parameter

ObjectType=0x09

[1800sub0]

ParameterName=Highest sub-index supported

DataType=0x0005

AccessType=const

DefaultValue=0x02

[1800sub1]

ParameterName=COB-ID used by TPDO

DataType=0x0007

AccessType=rw

DefaultValue=$NODEID+0x180

[1800sub2]

ParameterName=Transmission type

DataType=0x0005

AccessType=rw

DefaultValue=0x01 # cyclic every sync

[1A00]

ParameterName=TPDO mapping parameter

ObjectType=0x09

DataType=0x0007

AccessType=rw

CompactSubObj=1

[1A00Value]

NrOfEntries=1

1=0x30000020

A basic manufacturer-specific object 0x3000 representing a 32-bit unsigned integer is added with PDO

mapping enabled. To configure the TPDO service, objects 0x1800 and 0x1A00 are also added. The

0x3000 object is mapped in 0x1A00. The COB-ID used by object 0x1800 is equal to 0x181, the RPDO

service on the slave node will use the same value.

After regenerating the device initialization code using dcf2dev, only a small modification is necessary

to master application code as presented in Listing 42.

CANopen Library Toolset Doc. CAN-N7S-CANDP-SUM

CANopen SW Library – Software User Manual Date: 2025-09-08

 Issue: 2.3

N7 Space Sp. z o.o. Page: 47 of 54

Copyright 2025 N7 Space Sp. z o. o.

ESA Contract No. 4000143237/23/NL/AS

Listing 42 – Master application modifications for example PDO service.

void update_time_object(co_dev_t* device) {

 co_obj_t* obj = co_dev_find_obj(device, 0x3000u);

 if (!obj)

 return;

 const co_unsigned32_t value = time(NULL);

 co_obj_set_val(obj, 0x00u, &value, sizeof(value));

}

// ...

// main loop

while (last_signal == 0) {

 receive_message(network);

 update_time_object(device); // newly added line

 set_current_time(network);

 }

Above code snippet looks for the 0x3000 object and stores the current UNIX timestamp value in it on

every loop iteration. This is the information that will be later read by the slave application.

After building and running the application, the output from Listing 43 should be visible. TPDO is

transmitted right after sending a SYNC message and it can be seen that the value sent is slowly being

incremented by one. SYNC is configured to be sent every 500 milliseconds, which explains why the

same timestamp value is sent twice.

Listing 43 – Output from running example Master application with TPDO service.

SEND <0x80> <0>

SEND <0x181> <0> DATA: 0xc7 0x7a 0xd8 0x60

SEND <0x80> <0>

SEND <0x181> <0> DATA: 0xc8 0x7a 0xd8 0x60

SEND <0x80> <0>

SEND <0x181> <0> DATA: 0xc8 0x7a 0xd8 0x60

SEND <0x80> <0>

SEND <0x181> <0> DATA: 0xc9 0x7a 0xd8 0x60

It's time to move to the application running on the Slave node. Listing 44 presents the changes that need

to be made to its DCF file.

CANopen Library Toolset Doc. CAN-N7S-CANDP-SUM

CANopen SW Library – Software User Manual Date: 2025-09-08

 Issue: 2.3

N7 Space Sp. z o.o. Page: 48 of 54

Copyright 2025 N7 Space Sp. z o. o.

ESA Contract No. 4000143237/23/NL/AS

Listing 44 – NMT Slave DCF file modifications for example PDO service.

...

[OptionalObjects]

SupportedObjects=5

1=0x1005

2=0x1017

3=0x1F80

4=0x1400

5=0x1600

[ManufacturerObjects]

SupportedObjects=1

1=0x4000

...

[4000]

ParameterName=TutorialMasterTime

DataType=0x0007 # 32-bit unsigned integer

AccessType=rw

DefaultValue=0

PDOMapping=1

[1400]

SubNumber=3

ParameterName=RPDO communication parameter

ObjectType=0x09

[1400sub0]

ParameterName=Highest sub-index supported

DataType=0x0005

AccessType=const

DefaultValue=0x02

[1400sub1]

ParameterName=COB-ID used by RPDO

DataType=0x0007

AccessType=rw

DefaultValue=0x181

[1400sub2]

ParameterName=Transmission type

DataType=0x0005

AccessType=rw

DefaultValue=0x00

[1600]

ParameterName=RPDO mapping parameter

ObjectType=0x09

DataType=0x0007

AccessType=rw

CompactSubObj=2

[1600Value]

CANopen Library Toolset Doc. CAN-N7S-CANDP-SUM

CANopen SW Library – Software User Manual Date: 2025-09-08

 Issue: 2.3

N7 Space Sp. z o.o. Page: 49 of 54

Copyright 2025 N7 Space Sp. z o. o.

ESA Contract No. 4000143237/23/NL/AS

NrOfEntries=1

1=0x40000020

As with the Master application, a basic manufacturer-specific object representing a 32-bit unsigned

integer is added with PDO mapping enabled. The only difference is that a different object index is used.

To configure the RPDO service, objects 0x1400 and 0x1600 are also added. The 0x4000 object is then

mapped in 0x1600. The COB-ID used by object 0x1400 is the same as the one used by Master's TPDO

service.

Changes necessary for application code on the slave node are also quite small – see Listing 45. A custom

download indication function for the 0x4000 object is set. That allows the application code to be notified

on any writes made to the object. The tutorial uses it to simply print the received value. The co_sub_dn

function performs the actual write of the received value into the object.

Listing 45 – Slave application modifications for example PDO service.

co_unsigned32_t tutorial_sub_dn_ind(co_sub_t* sub, struct co_sdo_req* req,

 co_unsigned32_t ac, void* data) {

 if (ac) return ac;

 co_sub_on_dn(sub, req, &ac);

 const co_unsigned32_t time_on_master = co_sub_get_val_u32(sub);

 printf("Time on master is %u\n", time_on_master);

 return ac;

}

void set_4000_dn_ind(co_dev_t* device) {

 co_obj_t* obj = co_dev_find_obj(device, 0x4000u);

 if (obj)

 co_obj_set_dn_ind(obj, &tutorial_sub_dn_ind, NULL);

}

// ...

co_nmt_t* nmt = setup_nmt(device, network);

set_4000_dn_ind(device); // new line

set_current_time(network);

Assuming that the master application is still running, the slave application should now output messages

similar to the ones in Listing 46.

Listing 46 – Output from running example Slave application with RPDO service.

RECV <0x181> <0> DATA: 0xd9 0x7c 0xd8 0x60

RECV <0x80> <0>

Time on master is 1624800473

RECV <0x181> <0> DATA: 0xda 0x7c 0xd8 0x60

SEND <0x702> <0> DATA: 0x05

RECV <0x80> <0>

Time on master is 1624800474

CANopen Library Toolset Doc. CAN-N7S-CANDP-SUM

CANopen SW Library – Software User Manual Date: 2025-09-08

 Issue: 2.3

N7 Space Sp. z o.o. Page: 50 of 54

Copyright 2025 N7 Space Sp. z o. o.

ESA Contract No. 4000143237/23/NL/AS

It can be seen that an RPDO is received, but it is only acted upon after receiving a SYNC message.

That's when the custom indication function presented above is called and the received value is stored.

11.3.9 Client SDO

Because the 0x3000 object on the Master application is small and it takes only 4 bytes to represent its

value, an expedited SDO transfer can also be used to obtain it upon request. There is a simple

modification needed on the Slave application to enable a Client SDO Service, the 0x1280 object needs

to be configured – see Listing 47.

Listing 47 – NMT Slave DCF file modifications for example Client SDO service.

...

[OptionalObjects]

SupportedObjects=6

...

6=0x1280

...

[1280]

SubNumber=4

ParameterName=SDO client parameter

ObjectType=0x09

[1280sub0]

ParameterName=Highest sub-index supported

DataType=0x0005

AccessType=const

DefaultValue=0x03

[1280sub1]

ParameterName=COB-ID client -> server (tx)

DataType=0x0007

AccessType=rw

DefaultValue=0x601

[1280sub2]

ParameterName=COB-ID server -> client (rx)

DataType=0x0007

AccessType=rw

DefaultValue=0x581

[1280sub3]

ParameterName=Node-ID of the SDO server

DataType=0x0005

AccessType=rw

DefaultValue=0x01

Given the above, one needs to access the CSDO service instance from the NMT instance and submit an

upload request with the object index on the Master node, as shown in example method in Listing 48.

Server SDO instance is already running on the Master node. The request can be submitted at any time

the CSDO service is idle.

CANopen Library Toolset Doc. CAN-N7S-CANDP-SUM

CANopen SW Library – Software User Manual Date: 2025-09-08

 Issue: 2.3

N7 Space Sp. z o.o. Page: 51 of 54

Copyright 2025 N7 Space Sp. z o. o.

ESA Contract No. 4000143237/23/NL/AS

Listing 48 – Example code performing SDO request using Client SDO in Slave application.

void send_csdo_up_req(co_nmt_t* nmt) {

 co_csdo_t* csdo = co_nmt_get_csdo(nmt, 1);

 assert(csdo != NULL);

 const int rc = co_csdo_up_req(csdo, 0x3000, 0x00, NULL, &csdo_up_con, NULL);

 if (rc != 0) {

 printf("!! Failed to submit an SDO upload request due to error: %u\n",

 get_errnum());

 }

}

csdo_up_con is the user-provided upload confirmation function that will be called once the submitted

request is finished, either successfully or not. For this tutorial definition from Listing 49 is used. First

the abort code is checked. If it has a non-zero value, it means there was a failure and it should be

inspected. Otherwise there is an attempt to read the value. We know that the 0x3000 object on the Master

node is a 32-bit unsigned integer so exactly 4 bytes of data representing a UNIX timestamp are expected.

Listing 49 – Example code of SDO confirmation function for Client SDO in Slave application.

void csdo_up_con(co_csdo_t* sdo, co_unsigned16_t idx,

 co_unsigned8_t subidx, co_unsigned32_t ac,

 const void* ptr, size_t n, void* data) {

 if (ac != 0) {

 printf("CSDO received a non-zero abort code <%#x>\n", ac);

 return;

 }

 co_unsigned32_t val = 0u;

 const uint_least8_t* buf_ptr = (const uint_least8_t*)ptr;

 const co_unsigned32_t bytes_read =

 co_val_read(CO_DEFTYPE_UNSIGNED32, &val, buf_ptr, buf_ptr + n);

 printf("CSDO received %u bytes representing a value of %u\n", bytes_read,

 val);

}

If everything goes smoothly a similar to the output from Listing 50 is expected. However, if for example

the Master application is started after the SDO request was sent, a “Resource not available: SDO

connection” (0x060A0023) abort code is passed to the confirmation function – see Listing 51.

Listing 50 – Example output from Slave application running Client SDO service.

SEND <0x601> <0> DATA: 0x40 0x00 0x30 0x00 0x00 0x00 0x00 0x00

RECV <0x581> <0> DATA: 0x43 0x00 0x30 0x00 0x7a 0xf1 0xd8 0x60

CSDO received 4 bytes representing a value of 1624830330

Listing 51 – Example error report from Slave application running Client SDO service.

CSDO received a non-zero abort code <0x60a0023>

CANopen Library Toolset Doc. CAN-N7S-CANDP-SUM

CANopen SW Library – Software User Manual Date: 2025-09-08

 Issue: 2.3

N7 Space Sp. z o.o. Page: 52 of 54

Copyright 2025 N7 Space Sp. z o. o.

ESA Contract No. 4000143237/23/NL/AS

12 Analytical Index

N/A

CANopen Library Toolset Doc. CAN-N7S-CANDP-SUM

CANopen SW Library – Software User Manual Date: 2025-09-08

 Issue: 2.3

N7 Space Sp. z o.o. Page: 53 of 54

Copyright 2025 N7 Space Sp. z o. o.

ESA Contract No. 4000143237/23/NL/AS

13 Lists

13.1 List of Tables

Table 1 – CANSW build environment. ... 12
Table 2 – C Preprocessor configuration variables. .. 18
Table 3 – Error codes used internally by CANSW ... 19

13.2 List of Figures

Figure 1 – CANSW generic deployment diagram... 13
Figure 2 – CANSW components diagram. .. 14

13.3 List of Listings

Listing 1 – Unpacking CANSW source from ZIP file. ... 21
Listing 2 – Unpacking CANSW source from TAR BZIP2 file (recommended for Linux). 21
Listing 3 – Retrieving CANSW source from GitLab.com repository. .. 21
Listing 4 – Build tool configuration for building library in debug mode (without optimalization). 21
Listing 5 – Build tool configuration for building library in release mode (with optimization). 22
Listing 6 – Build configuration help command. .. 22
Listing 7 – Command for building the library and executing unit-tests. ... 22
Listing 8 – Command for generating documentation from the code. .. 22
Listing 9 – Build tool configuration for building library with SUTC type support enabled. 22
Listing 10 – Cross-compilation build configuration example (ARM platforms). 23
Listing 11 – Cross-compilation build configuration example (GR712RC platform). 24
Listing 12 – Custom installation directory configuration. ... 24
Listing 13 – alloc_t allocator structure. ... 27
Listing 14 – alloc_t and can_net_t setup. ... 27
Listing 15 – Default (NULL) allocator. .. 27
Listing 16 – Pool allocator usage example. ... 28
Listing 17 – can_msg structure representing CAN frame... 29
Listing 18 – CAN frame receiving using can_net_recv usage example. 29
Listing 19 – CAN frame sending callback example. ... 29
Listing 20 – Example of can_msg creation from lower layer data (SocketCAN). 30
Listing 21 – Example of can_msg transformation to lower layer data (SocketCAN). 31
Listing 22 – CAN network time setting using can_net_set_time example. 31
Listing 23 – CAN network callback for re-scheduling time update. ... 32
Listing 24 – CANopen device (co_dev_t) initialization example. .. 32
Listing 25 – CANopen Object Dictionary entry creation example. .. 33
Listing 26 – Standard dcf2dev installation using setuptools. .. 33
Listing 27 – dcf2dev installation in virtual environment (using venv). ... 34
Listing 29 – dcf2dev help command. .. 34
Listing 30 – dcf2dev usage. ... 34
Listing 31 – dcf2dev usage example. .. 34
Listing 32 – Minimal DCF file example. .. 34
Listing 33 – Example of header file generated by dcf2dev. .. 36

CANopen Library Toolset Doc. CAN-N7S-CANDP-SUM

CANopen SW Library – Software User Manual Date: 2025-09-08

 Issue: 2.3

N7 Space Sp. z o.o. Page: 54 of 54

Copyright 2025 N7 Space Sp. z o. o.

ESA Contract No. 4000143237/23/NL/AS

Listing 34 – Excerpts from example C source file generated by dcf2dev. .. 36
Listing 35 – Minimal NMT Master DCF example. ... 37
Listing 36 – Minimal NMT Slave DCF example. ... 39
Listing 37 – Necessary #include directives for minimal NMT implementation. 42
Listing 38 – Hardware abstraction layer implementation example. .. 43
Listing 39 – Basic example of NMT service framework for Master/Slave application. 44
Listing 40 – Basic NMT service indication functions example. ... 44
Listing 41 – Sample output from the NMT master node application. ... 45
Listing 42 – NMT Master DCF file modifications for example PDO service. 45
Listing 43 – Master application modifications for example PDO service... 47
Listing 44 – Output from running example Master application with TPDO service. 47
Listing 45 – NMT Slave DCF file modifications for example PDO service. .. 48
Listing 46 – Slave application modifications for example PDO service. .. 49
Listing 47 – Output from running example Slave application with RPDO service. 49
Listing 48 – NMT Slave DCF file modifications for example Client SDO service. 50
Listing 49 – Example code performing SDO request using Client SDO in Slave application. 51
Listing 50 – Example code of SDO confirmation function for Client SDO in Slave application. 51
Listing 51 – Example output from Slave application running Client SDO service. 51
Listing 52 – Example error report from Slave application running Client SDO service. 51

	1 Introduction
	2 Applicable and reference documents
	2.1 Applicable documents
	2.2 Reference documents

	3 Terms, definitions and abbreviated terms
	4 Conventions
	5 Purpose of the Software
	6 External view of the software
	7 Operations environment
	7.1 General
	7.2 Hardware configuration
	7.3 Software configuration
	7.4 Operational constraints

	8 Operations basics
	9 Operations manual
	10 Reference manual
	10.1 Introduction
	10.2 Help method
	10.3 Screen definitions and operations
	10.4 Commands and operations
	10.5 Configuration options
	10.5.1 Service tailoring
	10.5.2 Built-in buffer sizes

	10.6 Error messages
	10.6.1 Error codes
	10.6.2 Abort codes
	10.6.3 Assertions and logging

	11 Tutorial
	11.1 Introduction
	11.2 Getting started
	11.2.1 Obtaining the source
	11.2.2 Building the Library
	11.2.2.1 SCET and SUTC time types support
	11.2.2.2 Cross-compilation configuration

	11.2.3 Installation
	11.2.4 Include paths and library dependencies
	11.2.5 Endianness considerations
	11.2.6 Using CANSW with Microchip MPLAB X IDE

	11.3 Using the software on a typical task
	11.3.1 Memory allocation
	11.3.1.1 Default allocator
	11.3.1.2 Custom pool allocator

	11.3.2 Receiving and sending CAN frames
	11.3.3 SocketCAN frame translation
	11.3.4 Setting the time / external clock
	11.3.5 Device and Object Dictionary
	11.3.6 dcf2dev
	11.3.7 NMT Master and Slave
	11.3.8 PDO
	11.3.9 Client SDO

	12 Analytical Index
	13 Lists
	13.1 List of Tables
	13.2 List of Figures
	13.3 List of Listings

		2025-09-08T17:28:22+0200
	Konrad Grochowski

		2025-09-09T14:45:51+0200
	Mateusz Dyrdół

		2025-09-09T16:20:28+0200
	Seweryn Ścibior

